

The Hyper-Kamiokande experiment at LLR

Benjamin Quilain representing the LLR neutrino group

& Jerome, Franck, Amine, Mark, Lorenzo.

Hyper-Kamiokande

Conseil Scientifique du LLR, 2022/06/09

I. Hyper-K physics

Reminder : what is Hyper-K ?

• Next generation of neutrino observatory in Japan \rightarrow construction 2020-27

71 m

 \rightarrow A 260 kton water Cherenkov detector \rightarrow <u>Fiducial Mass ~ 8 x SK.</u>

Super-Kamiokande

68 m

	Super-K	Hyper-K (1st tank)
Site	Mozumi	Tochibora
Number of ID PMTs	11,129	40,000
Photo-coverage	40%	40% (×2 sensitivity)
Mass / Fiducial Mass	50 kton / 22.5 kton	260 kton / 187 kton

Solar neutrinos

Physics case

MSW effect in the Sun
Non-standard interactions in the Sun.

 \mathcal{V}_{e}

Solar neutrinos : upturn

Probe solar v : SK/SNO found a high matter effect in the Sun
 ↔ Solar upturn shifted to lower energies

- SK deviates from standard upturn scenario > 2σ .
- Displacement of the upturn can be explained by :
 - Statistical fluctuation ?
 - Light sterile neutrino ?
 - Non Standard Interaction in the dense Sun ?

Solar neutrinos

Physics case

- \mathcal{V} • MSW effect in the Sun • Non-standard interactions in the Sun. Supernovae neutrinos
 - <u>Direct SNv</u> : Constrains SN models.
 - <u>Relic SNv</u>: Constrains cosmic star formation history

Supernovae neutrinos

- <u>Unique probe for supernovae v</u>: 99 % of SN energy $\rightarrow v$.
 - But direct v detection very rare.
 - HK also sensitive to extra-galactic SNv from Andromeda !

• SN-relic neutrino \rightarrow new constraints

- Andromeda Milky way -100kpc -10kpc -10kpc
- on cosmic star history \rightarrow May be first detected in SK-Gd.

 \rightarrow But spectrum determined by HK : Low energy \leftrightarrow Probe older stars

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u> : Constrains SN models.
- <u>Relic SNv</u> : Constrains cosmic star formation history

GUT and proton decay

 π^0

p

- Probe Grand Unified Theories at a new scale through proton decay.
- <u>Golden channel</u> : $p \rightarrow e^+ + \pi^0 \rightarrow Almost background free !$
 - \rightarrow Requires 2 γ & reconstructed energy = Invariant M_P
 - \rightarrow <u>Bkg</u> : Atmospheric v producing e.g. a π^0 .

Solar neutrinos

Physics case

Proton decay

Probe Grand Unified Theories through p-decay (world best sensitivity)

MSW effect in the SunNon-standard interactions in the Sun.

 \mathcal{V}

Supernovae neutrinos

- <u>Direct SNv</u>: Constrains SN models.
 Relic SNv: Constrains cosmic star
- <u>Relic SNv</u>: Constrains cosmic star formation history

- Observe CP violation for leptons at 5σ
- Precise measurement of δ_{CP} .
- High sensitivity to v mass ordering.

Focus on CP violation

• CP violation search essentially based on accelerator v : T2HK Hyper-Kamiokande

- v_{e} appearance in a v_{μ} beam and v_{μ} disappearance & \overline{v} equivalents.
- Detector technologies, calibration, analyses well-proven by T2K&SK.
 ⇒ Quick start ! Which relies on 2 milestones :
 - 1. ↓ time to accumulate statistics \rightarrow Beam upgrade.
 - 2. \downarrow systematic uncertainties \rightarrow Constrains $v_{\mu} \& v_{\rho}$ flux before oscillation

11

Sensitivity to CP violation

• Assuming a run v:v = 1:3 @1.3MW (can be adjusted).

Atmospheric neutrinos

Mass-hierarchy can be accessed through matter effects
 → The longer the baseline, the higher the effects

- Mass hierarchy determined with upward-going multi-GeV v_e sample : atm. baseline ≤ 13000 km $\gg 295$ km accelerator baseline
 - Normal hierarchy : enhancement of $\nu_{\mu} \rightarrow \nu_{e}$.
 - <u>Inverted hierarchy</u> : enhancement of $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$.

Combination of atmospheric + beam v

- Even if MH is not known when HK starts \rightarrow Sensitivity to CPV is little affected if we add atmospheric v.
- <u>MH would be determined by :</u>
 - \rightarrow HK after \geq 6-10 years via atmospheric.
 - \rightarrow <u>DUNE</u> : after 1-2 years.

Precision of δ_{CP} measurement

• After CPV is determined, accurate measurement of δ_{CP} will be crucial

→ Maximal CPV, leptogenesis, symetries of lepton's generations ...

	5 years [HK & <mark>DUNE]</mark>	10 years [HK & DUNE]
CP conserved $\delta_{CP} = 0$	8° & 13°	6° & 9°
$\delta_{\rm CP} = -\pi/2$	25° & 29°	19° & 24°

• HK will be the leading experiment for CPV & δ_{CP} measurements in the next 20 years.

II. Electronique de HK et notre proposition

HK far detector electronics

- The whole HK physic signal will rely on 20k PMTs of 50 cm.
- <u>PMT signal to be readout by electronics under water</u> :
 - \rightarrow 24 channels/PMTs read in one stainless steel box under water.

- France would develop the whole PMT read-out (w/o DAQ).
- <u>LLR & OMEGA (+IRFU)</u> ; joint project to design the whole 20k PMT₁₇ time & charge digitization. \rightarrow Central role in HK!

Technical constraints

Physics constraint	Impact on electronics requirement	
Detect synchronous (beam) & asynchronous (atm., solar, p-decay, SN) events	Self triggering for each channel	
Detect close SN (e.g. Beltegeuse) w/ no event loss	Channel dead time $< 1 \mu s$	
Detection threshold as low as possible (negligible noise compared to PMT one)	Charge threshold < 0.25 p.e.	
Excellent detection & no charge ↔ E bias from low (solar, SN) to high energy physics	Charge linearity < 1 % from 0 to 2500 pC (0 to 1250 p.e. for HK)	
Excellent charge \leftrightarrow E resolution	0.05 p.e. RMS < 25 p.e	
Electronics < PMT time resolution (1.3 ns)	Electronics timing RMS < 0.3 ns at 1 p.e.	
Low power consumption as under water	1 W/ channel	

- <u>Candidate among existing chips : CATIROC for JUNO 8 cm PMT.</u> But : \rightarrow Deadtime of 9 µs > 1 µs.
 - \rightarrow Designed for small PMTs operating w/ gain ${\sim}10^{6}$
 - vs HK PMT ~ 10^7 : operating range 0-300 pC.
 - \rightarrow Use AMS 0.35 μm etching : will be soon stopped.

Origins of the HKROC : the CMS HGCROC

• <u>HKROC based on HGCROC :</u> chip developed for CMS-HGCalorimeter

 \rightarrow Rely on many years of expertize & tests.

19

 \rightarrow Great synergy between our projects !

The HKROC digitizer

<u>Based on HKROC chip</u>: 12 PMTs ↔ 36 channels (high,medium,low gain)

Overview of the HKROC digitizer

- <u>HKROC is a waveform-like digitiser @40 MHz \rightarrow 1 point every 25 ns.</u>
 - \rightarrow Charge digitized by N = 1 \rightarrow 7 points (chosen by slow-control).

• <u>HKROC digitizer :</u> 24 PMT channels readout by 2 HKROC ASIC.

HKROC prototype v1

HKROC final board

Performances of the HKROC digitizer

- <u>Measurements @3 test bench/labs in parallel :</u> CEA, OMEGA, LLR.
 - \rightarrow High redundancy to \downarrow risk of mistakes.
 - \rightarrow Ready for the pre-production & production tests, also @3 labs.

- <u>Measurements based on HKROC v1 :</u>
- → Back fom prod. on 01/28. → <u>Chip size :</u>
- 5 mm x 5 mm [Ultra-compact]

Trigger rate and time resolution

- <u>Set threshold at 1/6 p.e.</u>
- <u>Hit efficiency :</u>
 90 % for 1/5 p.e events
 ~100 % if ≥ 1/4 p.e
- <u>Very low noise :</u> < 1 Hz (0 noise hit in 10s)
- <u>TDC resolution :</u>
 150 ps @1 p.e [300 ps required]
 ≤ 30 ps @ 10 p.e [200 ps required]

 \rightarrow Excellent agreement with HK requirements. 23

Charge reconstruction

• 200 events taken. For each event, 6 points/snapshots are taken :

 \rightarrow Eye check : Normalized distributions in good agreement \rightarrow Good linearity ?

 \rightarrow All results in next slides are done using only 3 points per waveform.

Charge reconstruction

1 %

p.e

- <u>Charge linearity < ±1%</u> from 1 to 1250 p.e
- <u>Charge resolution :</u> < 0.1 p.e @≤ 10 p.e
 - < 1 % otherwise.
- \rightarrow Except for two points : will be solved by changing the voltage divider on the board from 1:10:1000 to 1:9:45.
 - \rightarrow Excellent agreement with HK requirements.

Measurements with the PMT

<u>Connected Hamamatsu R12680 PMT to HKROC</u>: illuminated by a

PILAS 402 nm laser diode:

→ Substantial amount of time spent
to finely characterize the PMT charge
& time.

Charge measurements with the PMT

- The charge linearity is $\leq \pm 1\%$
 - \rightarrow Exact same behaviour than with the function generator.
- <u>The charge resolution is almost unchanged (max 7%)</u> wrt the PMT resolution.

• Time resolution = $2.8 \text{ ns} \rightarrow \text{Same as PMT w/o digitizer}$

High-hit rate tolerance

- <u>2 modes cope-up w/ high hit-rate :</u> Normal (≤ 400 kHz)
- & Supernova ($\leq 950 \text{ kHz}$) \rightarrow Used for very close SN (Beltegeuse).
- \rightarrow <u>Dynamic change between 2 modes</u> w/ « almost full » memory pin.
- \rightarrow « Almost full » when > 10 events happen consecutively \geq 400 kHz.

- <u>SN-mode</u> : same as normal mode, but only HG channel (\leq 35 p.e).
- One ASIC readout link (one memory buffer) \leftrightarrow 3 PMT channels <u> \rightarrow To test saturation :</u> inject up to 1 MHz on 3 consecutive channels.

High-hit rate tolerance

Inject 3 times higher rate on one channels (Simpler technically)
 → Confirmed w / analog probe saturation happens at same point.

- SN-mode works exactly as in simulation !
- Q/T perf. not affected & compatible w/ HK
- Confirmed <u>« almost full-flag » is working</u> <u>exactly as expected.</u>

Pile-up measurements

- 2 events w/ same charge separated by $\Delta t = 30$ ns.
- Can we reconstruct both peaks properly ?
 → Requested dead-time for Hyper-K is 1 µs.
- Eye check : → Event separation is not trivial !
 - → Good linearity, even
 for pile-up event.
 → Apply charge reco.
 - w/ 2 peaks at fixed trigger times.

time after trigger (ns)

Pile-up measurements

Cross-talk measurements

• Full cross-talk measurements :

CH3 HG

CH4 MG

CH5 LG

CH6 HG

CH7 MG

CH8 LG

470 Ω

47 0

4.7 Q

470 Ω

47 Ω

4.7 Ω

XTalk

56 Ω≶

Injection

- Found 2 sources of cross-talk :
 - <u>1. Close : Only on 2 neighbour (as a function of distance</u> → Receive ~ 100 p.e on LG, 5 p.e on MG, 0 on HG.

2. Diffuse cross-talk : → Receive 1/5 p.e on all channels : close to detection threshold.

 \rightarrow Smaller but much more worrysome for physics.

Source & fix of the diffuse cross-talk

500 f

IN_P/

36 chs

Extctest

2pF

In_ctest

- <u>The diffuse cross-talk has been observed in schematic simulations.</u>
 - \rightarrow Comes from PA bias voltage, and CTest.
- <u>Added decoupling C=100 nF to PA bias V :</u>

• The cross-talk is completely identified & removed at all level (PA \rightarrow_{33} Trigger and shaper \rightarrow Charge) : implemented in HKROC v2 (Dec.).

What if we were to install HKROC today ?

<u>Relies on waveform to remove fake hits & fit simulatenous signals.</u>

 \rightarrow Try to reconstruct the 1 p.e event trigger time using the pile-up reconstruction : could in theory correct the baseline shift. In reality ?

Simulatenous event & diffuse cross-talk

• <u>To be complete</u> : 1 and 850 p.e event trigger time \neq was varied :

$\Delta t = t_{1pe} - t_{850pe} -30 \text{ hs} -25 \text$

• <u>Results on the trigger time reconstructed :</u>

Clear shift of 1 p.e trigger time (up to 40 ns) if XT happens before.
 Completely corrected through the pile-up reconstruction. 35
 → RMS ≤ 260 ps : of course worse than HKROC nominal capabilities (150)

Temperature dependency & Power

Supernova mode				
VCC INT	0.99	0.95	1.04	
VCC AUX	0.54	1.80	0.30	
VCC BRAM	0.02	0.95	0.03	
VCC 1V8	0.02	1.80	0.01	
VADJ 1V8	0.16	1.80	0.09	
VCC $1V2$	0.06	1.20	0.05	
HGTAVCC	0.17	1.00	0.17	
HGTAVTT	0.18	1.20	0.15	
ASIC & Mother board	1.09	3.3	0.330	
Total	3.23			

HKROC temperature on-board

- $\Delta t = 1 \text{ps} / ^{\circ}\text{C}$
- Δ Gain = 0.05 % / °C (w/o corr.).
 - \rightarrow Well within Hyper-K needs.
- Temperature on chip (34°C) is 9°C higher than ambient temperature.
- Power for 2 HKROC < 6.6 W. $_{36}$ $\rightarrow \leq 24$ W required.

Lifetime : Protection board & MTBF

MTBF of HKROC (10 years): Focused on ASIC since not a commercial component (where we can select appropriate MTBF).
 → Hensoldt SC : specialized in MTBF evaluation for space & deep

99,8 —	R in functi	on of Temperature Board Ambient	(FIDES 2009)	water components.
99,6				• \geq 99.7 % survival rate after
99,4 —				10 years (> 99 % required).
Reliability R	HENSOLDT	HKROC/ REL		• <u>Homeworks</u> : evaluate
98,8 — 98,6 —	HENSOLDT SPACE CONSULTING	21F007/RP/1530/22	Ed. 02	MTBF of the whole board
98,4	, , , , , , , , , , 5 10 15 20 25 30 35 40	45 50 55 60 65 Board Temperature (*C)	70 75 80 85 90 95 100	\rightarrow On-going.

Summary of the digitizer measurements

Item measured	Performances		
Trigger efficiency at $1/6$ p.e.	> 90% for 1/5 p.e signals		
	100% for $\geq 1/4$ p.e signals		
Trigger noise at $1/6$ p.e.	< 1 Hz (No trigger observed in 10 s)		
TDC resolution	150 ps at 1 p.e, 70 ps at 5 p.e, 25 ps > 10 p.e		
	Validated with PMT		
	< 0.5% in high & medium gain channels		
Charge linearity	< 1% in low gain channel up to 1250 p.e		
	Validated with PMT		
	< 0.1 p.e for signals up to 10 p.e		
	< 1% for signal 40 - 300 p.e and > 750 p.e		
Charge resolution	< 2.4% for all other cases.		
	Will be improved by reducing the unnecessary voltage division.		
	Validated with PMT		
Dead-time	≤ 30 ns for two signals of same amplitude		
& pile-up	≤ 30 ns for a prompt ≤ 5 p.e and secondary of 1 p.e		
	$< 1 \ \mu s$ for a prompt signal ≤ 850 p.e and secondary 1 p.e		
Maximal	415 kHz in normal mode		
hit-rate	950 kHz in SN-mode		
w/ 100% eff.	Potential extension beyond to be studied.		
	Hit probability in neighbouring channel		
Cross-talk	of a 1250 p.e signal is $< 0.1\%$		
	Note that cross-talk found at ASIC level, but cut		
	by FPGA. Identified and will be removed in ASIC v2.		
Maximal	415 kHz in normal mode		
hit-rate	950 kHz in SN-mode		
w/ 100% eff.	Potential extension beyond to be studied.		
Temperature	time resolution $\Delta T = 1 \text{ ps/}^{\circ}\text{C}$		
dependency ²	gain variation $\Delta Q = 0.05\%/^{\circ}C$ (no correction)		
Resistance to HV	Unprotected ASIC received 10^8 5V injection		
	without any impact on performances		

38

III. Incoming R&D and decision milestones

HKROC digitizer planning : ASIC

- <u>Current version v1 :</u> mounted on board w/ flip-chip.
- BGA-package for final board : ordered & in prod.
 → To be received in September.
- <u>Version v2</u>: A TSMC run for OMEGA already scheduled in Dec. 2022.
 - \rightarrow Will use it to fine tune HKROC for HK.
 - \rightarrow Completely remove cross-talk.
 - \rightarrow Likely to submit 2 versions :
 - <u>v2-A</u> : minimal change wrt v1 for safety.
 - <u>v2-B</u> : more aggressive changes to ↑ hit-rate largely beyond our requirements.

HKROC digitizer planning : Board

• <u>Prototype v1</u>: Same as final prototype board except for the FPGA & Interface with PC left on the KCU105.

- Test whole circuit from analog to digitized points.
- Test the 2 HKROCs.
- Tests communication with DPB (Curro & al.)
- \rightarrow Schematics well-advanced (based on current mother board).
- \rightarrow 1 HKROC-board in 2022/09, 2 HKROC board in 2023/01.
- <u>Prototype v2</u> : The final prototype board. \rightarrow To be received in summer 2023.

Updated schedule towards production

• ASIC production could be done in advance : from end of 2023.

 \rightarrow Have <u>3 operating ROBOT</u> to test them at CEA, LLR & OMEGA (used for CMS to test 200,000 HGCROC chips).

- Board production : from Q4 2024 to mid-2025.
- We are completely on-time !

The Hyper-K candidate digitizers

• <u>3 digitizers considered</u> : all high-specs but explore ≠ digitization method

	QTC	Discrete	HKROC
Charge digitizer	ASIC (QTC)	Commercial ADC	ASIC (HKROC)
Digitization method	Charge integration	Charge integration	Waveform digitizer
TDC	On FPGA	Same as QTC	HKROC internal TDC

- All 3 solutions will likely match the specs.
- Internal review will finish next week.
- Collaboration review has started 43
 → Decision by end of July.

Conclusions

- Developed a digitizer based on HKROC ASIC.
 → Compact & based on years of R&D for CMS.
- Massive measurement & characterization campaign started in February → First HKROC received on 01/28 !
 - \rightarrow Simultaneous tests at 3 labs by 3 teams allowed to be ready in-time & prepare all test benches for future production tests.
 - \rightarrow Not a single months of delay after 2 years of pandemic => A fantastic team effort : at LLR : Franck, Jerome, Amine, Olivier, Antoine, Marc & Lorenzo. Thank you to them/us for our incredible work & crazy hours ! \rightarrow Fascinating project that we managed to clear in-time. Whatever the collaboration decision, we made an incredible ASIC for future WC experiments.
- <u>Some homeworks remaining</u> : Test the signal reflection, tune the $_{44}$ protection board etc. \rightarrow <u>Imperative to clear them quickly to be selected</u>.

Conclusions

- <u>Waveform digitization allows some additional features that can improve</u> <u>physics & hat has been little investigated so far :</u>
 - \rightarrow Separate of direct & scattered light, μ/π separation, \uparrow decay-e eff. ...
 - \rightarrow Studying possible cons : limited charge range for SN \leq 35 p.e.
 - \rightarrow To be studied from now w/ the Physics & software group.
 - \rightarrow Any interested person (or idea) is highly welcome.
- <u>We are in best position to have a central rôle in HK as all of us dreamed</u> <u>about 2 years ago.</u>
 - \rightarrow Decision to be taken in the incoming 2 months.
 - \rightarrow We have already started to proceed to the next stage as if we were selected.