

Spectroscopic Surveys: A Precision Probe of Old & New Physics

Oliver Philcox (Princeton / IAS)

Dark Energy Webinar, May 2022

Collaborators: Mikhail Ivanov, Giovanni Cabass, Marko Simonovic, Matias Zaldarriaga, Takahiro Nishimichi, Masahiro Takada, Blake Sherwin, Gerrit Farren, Eric Baxter, Dillon Brout

1. What Can We Measure?

COSMOLOGY FROM SPECTROSCOPIC SURVEYS

Big Telescope

10⁶ Galaxy Positions

WHAT DO WE DO WITH THE DATA?

Compress the 10^6 galaxy positions to a **power spectrum**, $\langle \delta_g(\mathbf{k}) \delta_g^*(\mathbf{k}) \rangle$

Use a scaling analysis to measure:

Overall **amplitude** (= primordial amplitude)

Wiggle positions (= BAO feature)

Robust way to constrain growth rate $D_A(z)$, and expansion history H(z)

WHAT DO WE DO WITH THE DATA?

Compress the 10^6 galaxy positions to a **power spectrum**, $\langle \delta_g(\mathbf{k}) \delta_g^*(\mathbf{k}) \rangle$

Use a scaling analysis to measure:

Overall **amplitude** (= primordial amplitude)

Wiggle positions (= BAO feature)

Robust way to constrain growth rate $D_A(z)$, and expansion history H(z)

WHAT <u>COULD</u> WE DO WITH THE DATA?

 \triangleright This is not all the available information!

Measure parameters directly from the full shape of the galaxy power spectrum

 \triangleright This is just like for the CMB!

This needs an accurate theory model...

THE EFFECTIVE FIELD THEORY OF LARGE SCALE STRUCTURE

> Analytic theory for $\delta(\mathbf{x})$, based on the non-ideal fluid equations

 \triangleright A <u>controlled</u> **Taylor series** in $k/k_{
m NL}$

(or $k\sigma_{FoG}$, kR_{Halo})

Major Ingredient: Back-reaction of small-scale physics on large-scale modes

Also includes: galaxy bias, long-wavelength displacements, redshift-space distortions, primordial non-Gaussianity, etc.

$$\dot{\nabla}^{i} + H \nabla^{i} + \nabla^{j} \delta_{j} \nabla^{i} = \frac{4}{\rho} \delta_{j} \mathcal{T}^{j}$$

$$\vec{v} = \vec{v}$$

Baldauf, Advanced Cosmology

THE EFFECTIVE FIELD THEORY OF LARGE SCALE STRUCTURE

> Analytic theory for $\delta(\mathbf{x})$, based on the non-ideal fluid equations

 \triangleright A <u>controlled</u> Taylor series in $k/k_{
m NL}$

(or $k\sigma_{FoG}$, kR_{Halo})

Major Ingredient: Back-reaction of small-scale physics on large-scale modes

Also includes: galaxy bias, long-wavelength displacements, redshift-space distortions, primordial non-Gaussianity, etc.

Arbitrarily accurate on large scales!

MODEL VALIDATION

Compare EFTofLSS model to N-body simulations, comparing $P_{gg}(\mathbf{k})$

▷ Total volume: 566 $(h^{-1}\text{Gpc})^3$

▷ Larger than DESI / Euclid!

Fully **blind** analysis

Unbiased cosmological parameters!

9

See <u>GitHub.com/michalychforever/CLASS-PT</u>

WHAT'S BEYOND THE POWER SPECTRUM? (#1)

Add the **wiggly** information from **baryon acoustic oscillations**

WHAT'S BEYOND THE POWER SPECTRUM? (#2)

Fingers-of-God are limiting at high-k

 $\triangleright k_{\max}$ is lower for radial modes!

 \triangleright Can we compute $P(k, \mu = 0)$?

lvanov+21 (see also Tegmark, d'Amico+21)

WHAT'S BEYOND THE POWER SPECTRUM? (#2)

Compute the **real-space** power spectrum

$$P_0(k)$$

 \approx
 $\mu = 0$)
 $[^{z}_{0} d_{x_{-1}}]^{15}$
 $[^{z}_{0} d_{x_{-1}}]^{10}$
 $[^{z}_{0} d_{x_{-1}}]^{10}$

- No Fingers-of-God!
- Push to $k_{\rm max}=0.4h/{
 m Mpc}$
- Constraints improve by (10 100)%

WHAT'S BEYOND THE POWER SPECTRUM? (#3)

Add the galaxy bispectrum:

$$B_g(k_1, k_2, k_3) = \langle \delta_g(\mathbf{k}_1) \delta_g(\mathbf{k}_2) \delta_g(\mathbf{k}_3) \rangle'$$

This is <u>hard</u>:

- Window functions
- Theory model

THE MASKED BISPECTRUM

Problem: We don't measure the density field directly.

$$\delta_g(\mathbf{r}) \to W(\mathbf{r})\delta_g(\mathbf{r}) \qquad \delta_g(\mathbf{k}) \to \int \frac{d\mathbf{p}}{(2\pi)^3} W(\mathbf{k} - \mathbf{p})\delta_g(\mathbf{p})$$

Window Function

The measured bispectrum is a triple convolution

$$B_g(\mathbf{k}_1, \mathbf{k}_2) \to \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

Solution: Convolve the theory model too

This is very expensive!

BISPECTRA WITHOUT WINDOWS

Alternatively: estimate the unwindowed bispectrum directly

$$B_g^{\min}(\mathbf{k}_1, \mathbf{k}_2) = \int_{\mathbf{p}_1 \mathbf{p}_2} W(\mathbf{k}_1 - \mathbf{p}_1) W(\mathbf{k}_2 - \mathbf{p}_2) W(\mathbf{p}_1 + \mathbf{p}_2 - \mathbf{k}_1 - \mathbf{k}_2) B_g(\mathbf{p}_1, \mathbf{p}_2)$$

Derive a maximum-likelihood estimator for the true bispectrum

Effectively **deconvolves** the window

$$\nabla_{B_g} L[\text{data}|B_g] = 0 \quad \Rightarrow \quad \widehat{B}_g = \cdots$$

See <u>GitHub.com/oliverphilcox/Spectra-Without-Windows</u>

MODELLING THE BISPECTRUM

Effective-Field-Theory Model:

- Tree-level theory
- Second-order galaxy bias
- Large-scale displacements
- Coordinate transformations
- Fingers-of-God

Tested on 566 $(\text{Gpc}/\text{h})^3$ simulations Accurate up to $k_{max} = 0.08 \ h/\text{Mpc}$

1-loop bispectrum coming soon!

2. What Have We Learnt About ΛCDM ?

THE UNOFFICIAL BOSS DR12 ANALYSIS

THE UNOFFICIAL BOSS DR12 ANALYSIS - TESTING

Validate with high-resolution **Nseries** mocks

 \circ All parameters recovered at $\ll 1\sigma$

• Theory model works!

○ Window function works!

• Fiber collisions work!

See <u>GitHub.com/oliverphilcox/full_shape_likelihoods</u>

Philcox+21

CONSTRAINTS ON H₀

BOSS Power Spectrum + Bispectrum:

 $H_0 = 68.3 \pm 0.8 \,\mathrm{km}\,\mathrm{s}^{-1}\mathrm{Mpc}^{-1}$

- H_0 agrees with Planck
- 3.7σ discrepant with SHOES!

Where does this information come from?

TWO STANDARD RULERS FOR H₀

21

lvanov+21 Philcox+21

THE EQUALITY SCALE: AN (OLD) PROBE OF H₀?

 \odot The **equality scale** contains H_0 information

 $\theta_{\rm eq} \sim k_{\rm eq} D_{\rm A}(z) \propto H_0$

 \odot This is anchored at $z_{\rm eq} \sim 3600$, much before recombination at $z_d \sim 1100$

• New physics at $z \sim 10^3$ should affect **BAO** and equality H_0 measurements differently

 $H_0(z_{eq}) - H_0(z_d)$ is a consistency test for ΛCDM

CONSTRAINTS ON H₀

BOSS Full Power Spectrum + Bispectrum:

 $(z \approx 1100)$ $H_0 = 68.3 \pm 0.8 \text{ km s}^{-1} \text{Mpc}^{-1}$

BOSS-without-the-sound-horizon:

(using new r_d-marginalized pipeline)

 $(z \approx 3500)$ $H_0 = 67.1 \pm 2.7 \text{ km s}^{-1} \text{Mpc}^{-1}$

 3.0σ tension with SH0ES!

Measurements will get **much** tighter with Euclid!

Sound-Horizon Independent Constraints 23

CONSTRAINTS ON σ_8

BOSS (+ BBN) Constraints

BOSS Power Spectrum + Bispectrum:

 $\sigma_8 = 0.72 \pm 0.03$ (with Planck n_s)

 $\sigma_8 = 0.69 \pm 0.04$ (no Planck)

This is consistent with weak lensing, but somewhat lower than *Planck*:

 $S_8 = 0.73 \pm 0.04$ (BOSS)

 $S_8 = 0.83 \pm 0.01$ (Planck)

Philcox+21 (see also Chen+21, d'Amico+21)

WHERE DOES THE σ_8 information come from?

 σ_8 is set by the large-scale (k < 0.1h/Mpc) quadrupole

This is hard to change!

- Mostly linear scales
- Bias well understood
- Fingers-of-God suppressed

Philcox+21 (see also Chen+21, d'Amico+21)

CONSTRAINTS ON OTHER PARAMETERS

BOSS (+ BBN) Constraints

Matter Density:

$$\Omega_m = 0.34 \pm 0.02$$

Consistent with Pantheon+ supernovae!

Spectral Slope: $n_{\rm S}=0.87\pm0.07$

Consistent with Planck

Neutrino Mass:

26

 $\sum m_{\nu} < 0.14 \text{ eV} (95\% \text{ CL})$

Philcox+20,21 (see also Chen+21, d'Amico+21)

CONSTRAINTS ON ASTROPHYSICS

- Analysis also measures bias
 parameters (especially the bispectrum)
 These encode the physics of galaxy
 formation
- Consistent with simulation results!

Philcox+21 (see also Chen+21, d'Amico+21)

3. What Have We Learnt Beyond $\Lambda \text{CDM}?$

NON-GAUSSIAN INFLATION

Are the primordial perturbations **Gaussian** and **adiabatic**?

In Single-Field Slow-Roll Inflation:

$$f_{\rm NL} \sim (1 - n_s) \ll 1$$

Non-standard inflation can beat this:

- Multifield Inflation [Local Bispectrum]
- New Kinetic Terms [Equilateral Bispectrum]
- New Vacuum States [Folded Bispectrum]

$$B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\mathrm{NL}} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$$

 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

Planck TTT Bispectrum

Planck 2018 IX

NON-GAUSSIAN INFLATION

How do we measure this?

CMB Bispectrum 1.

NON-GAUSSIAN INFLATION

 $B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$

How do we measure this?

1. CMB Bispectrum

2. Galaxy Power Spectrum

Desjacques & Seljak 10, eBOSS 21

Philcox+21, Cabass+21,22

NON-GAUSSIAN INFLATION

How do we measure this?

1. CMB Bispectrum

2. Galaxy Power Spectrum

3. Galaxy Bispectrum

Need a good theory model and careful window function treatment!

$$B_{\zeta}(\mathbf{k}_1, \mathbf{k}_2) \approx \frac{6}{5} f_{\rm NL} P_{\zeta}(k_1) P_{\zeta}(k_2) + 2 \text{ perms.}$$

MODELING PRIMORDIAL NON-GAUSSIANITIES

Theory model includes:

- Primordial bispectrum:
 - $\left< \delta^{(1)} \delta^{(1)} \delta^{(1)} \right> \sim f_{\rm NL} P^2(k)$
- Scale dependent bias:
 - $b_1(f_{\rm NL}) \rightarrow b_1 + (b_{\phi}f_{\rm NL})/k^2$

Loop corrections:

$$P_{gg}(\mathbf{k}) \rightarrow P_{gg}(\mathbf{k}) + f_{\rm NL} \int d\mathbf{q} \, \alpha \, P(\mathbf{q}) P(\mathbf{k} - \mathbf{q})$$

Cabass+21,22 (see also d'Amico+22)

See <u>GitHub.com/michalychforever/CLASS-PT</u>

CONSTRAINTS ON $f_{\rm NL}$

 $> w_0, w_a$ consistent with cosmological constant [Chudaykin+20]

$$\mathbf{\Omega}_k = -\mathbf{0}.\,\mathbf{04} \pm \mathbf{0}.\,\mathbf{04}$$

 $> w_0, w_a$ consistent with cosmological constant [Chudaykin+20]

Curvature consistent with zero [Chudaykin+20]

 $> w_0, w_a$ consistent with cosmological constant [Chudaykin+20]

Curvature consistent with zero [Chudaykin+20]

No evidence for early dark energy [lvanov+20]

- $> w_0, w_a$ consistent with cosmological constant [Chudaykin+20]
- Curvature consistent with zero [Chudaykin+20]
- No evidence for early dark energy [lvanov+20]
- Strong constraints on light massive relics [Xu+22]

 $> w_0, w_a$ consistent with cosmological constant [Chudaykin+20]

Curvature consistent with zero [Chudaykin+20]

No evidence for early dark energy [lvanov+20]

Strong constraints on light massive relics [Xu+22]

Strong constraints on axion dark matter [Lague+21, Rogers+ (in prep.)]

- $> w_0, w_a$ consistent with cosmological constant [Chudaykin+20]
- Curvature consistent with zero [Chudaykin+20]
- No evidence for early dark energy [lvanov+20]
- Strong constraints on light massive relics [Xu+22]
- Strong constraints on axion dark matter [Lague+21, Rogers+ (in prep.)]
- Strong constraints on dark-sector interactions [Nunez+22]

- $\triangleright w_0, w_a$ consistent with cosmological constant [Chudaykin+20]
- Curvature consistent with zero [Chudaykin+20]
- No evidence for early dark energy [lvanov+20]
- Strong constraints on light massive relics [Xu+22]
- Strong constraints on axion dark matter [Lague+21, Rogers+ (in prep.)]
- Strong constraints on dark-sector interactions [Nunez+22]

And many more...

All analysis is public: github.com/oliverphilcox/full_shape_likelihoods

WHAT'S NEXT?

- Complete bispectrum theory model at one-loop
- Bispectrum Multipoles?
- Trispectrum / correlation functions?
- Other new physics?
- **DESI / Euclid** + beyond?

LSS constraints will (eventually) beat the CMB!

arXiv 2204.02984 2204.01781 2201.07238 2112.10749 2112.04515 2110.10161 2110.00006 2107.06287 2012.09389 2008.08084 2004.10607 2002.04035

Contact

@oliver_philcox

CONCLUSIONS

• We can robustly **measure** and **model** the galaxy power spectrum and bispectrum of survey data

• This allows **direct** extraction of **cosmological parameters** including H_0 , Ω_m , σ_8 , $f_{\rm NL}$, w_0 , Ω_k , $f_{\rm EDE}$

 BOSS data is already useful: this will get much better with Euclid / DESI