
Virgo activities linked to cosmology at IPHC

- Calibration of GW detectors
 - Development of Newtonian Calibrators
 - Cross-calibration of the GW network using astrophysical events
- Detection and characterization of signals with MBTA
 - Online search for EM counterpart
 - Assessing the probability of astrophysical origin and source classification

IPHC group: D. Estevez, V. Juste, B. Mours, T. Pradier, A. Syx + technical support

Virgo France Cosmology – June 21st 2022

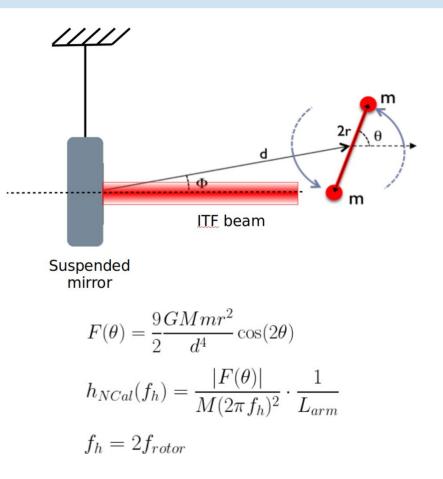
Getting the Hubble constant right

Accurate measurement of the luminosity distance needs accurate calibration of the GW strain

$$h \propto d_L^{-1}$$
 $H_0 = \frac{\mathrm{c}z}{d_L}, \ z \ll 1$

Typical calibration uncertainty on h(t) during O3: \rightarrow between ~2% and ~7% (20Hz – 2kHz band)

Newtonian calibrator (NCal)


Two masses in rotation

- \rightarrow Non linear effect of Newton's gravitational law
- \rightarrow Displacement of the suspended mirror

Setup at Virgo

NCal rotor

NCal uncertainties from O3 to O4

Parameter	NCal near [%]	NCal far [%]]
NCal to mirror distance d	2.02	1.31	
NCal to mirror angle Φ	0.28	0.19	
NCal vertical position z	0.03	0.01	
Rotor geometry	0.53	0.53]
Modeling method	0.018	0.017	****
Mirror torque from NCal	0.05	0.03]
Total	2.1	1.4]

NCal strain uncertainty budget during O3

D. Estevez et al, 2021, CQG, 38 075012

Plan to reach a subpercent accuracy on h_{NCal} for O4:

- Reduce the contribution of the NCal-to-mirror distance
 - → Installation of reference plates (VIR-0343A-22)
 - Distance uncertainty should be ~1 mm (0.2% at 1.7m)
- Reduce the contribution of the rotor geometry
 - Simplified geometry and better metrology (VIR-160A-22, VIR-0591A-22)
 - Rotor geometry uncertainty should be < 0.1%

VIR-0591A-22 Characteristics of the rotor R4-01 for the O4 NCal system					
R4-01 rotor parameter advanced model (23°C) NCal 2f signa					
name	mean value	uncertainty	formula	value (%)	
Density ρ (kg.m ⁻³)	2808.0	0.2	$\delta ho / ho$	0.007	
Thickness b left sector (12 sub-sectors) (mm) Thickness b right sector (12 sub-sectors) (mm)	104.322 104.307	1.26×10^{-2}	$\delta b/b$	0.012	
r_{max} left sector (8 ext sub-sectors) (mm) r_{max} right sector (8 ext sub-sectors) (mm)	104.031 104.040	$9.9 imes 10^{-3}$	$4\delta r_{max}/r_{max}$	0.038	
$G (m^3.kg^{-1}.s^{-2})$	$6.67430 imes10^{-11}$	1.5×10^{-15}	$\delta G/G$	0.002	
Temperature T (°C)	23	3	$\left \frac{\partial h}{\partial T} \right \frac{\Delta T}{h}$	0.014	
Modelling Uncertainty					
Angle opening and asymmetry uncertainty					
Total uncertainty from the rotor (quadratic sum)					

Probability of astrophysical origin and source classification

Three types of compact-binary coalescences observed:

Binary Neutron Stars (BNS)

Neutron Star Black Hole (NSBH)

Binary Black Hole (BBH)

In low-latency:

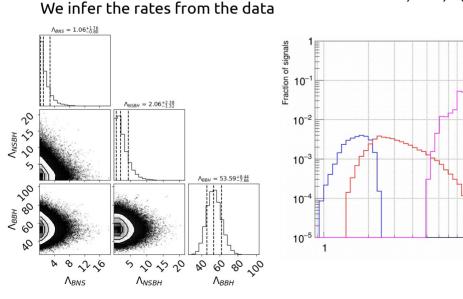
Help astronomers to decide whether to undertake a follow-up or not of the gravitational-wave candidates

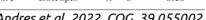
In archival data:

- Sub-threshold triggers analysis with other messengers (electromagnetic, neutrinos...)
- Compute binary merger rates of source specific compact objects

→ Requires assumptions about population models, redshift evolution...

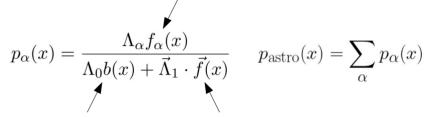
Assessing the nature of a GW candidate: p_{BNS} , P_{NSBH} , P_{BBH}


Probability of astrophysical origin:


- Jointly estimated with source membership probabilities { p_{RNS} ; p_{NSBH} ; p_{RBH} }
- $p_{astro} = p_{BNS} + p_{NSBH} + p_{BBH} = 1 p_{noise}$

Assumed population models (MBTA example from O3)

	Mass distribution	$\frac{\text{Mass}}{\text{range }(M_{\odot})}$	Spin range	Spin orientations	Redshift evolution	Maximum redshift
BBH (pop)	Power Law + Peak	$5 < m_1 < 80$ $5 < m_2 < 80$	$ \chi_{1,2} < 0.998$	isotropic	$\kappa = 0$	1.9
NSBH	$p(m_1) \propto m_1^{-2.35}$ uniform	$2.5 < m_1 < 60$ $1 < m_2 < 2.5$	$ \chi_1 < 0.998$ $ \chi_2 < 0.4$	isotropic	$\kappa = 0$	0.25
BNS	uniform	$\begin{array}{l} 1 < m_1 < 2.5 \\ 1 < m_2 < 2.5 \end{array}$	$ \chi_{1,2} < 0.4$	isotropic	$\kappa = 0$	0.15


N. Andres et al, 2022, CQG, 39 055002

10

Astrophysical foreground density for the source α

Background density Astrophysical foreground density

04:

BNS

NSBH

BBH (pop)

Detected chirp mass [M

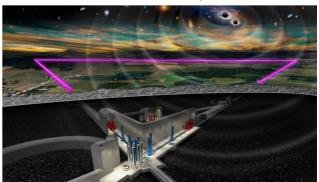
- Update population models
- Joint fit of the rate and redshift evolution (BBH peak?)

Remark:

Sources near detection thresholds are far away \rightarrow interesting for cosmology

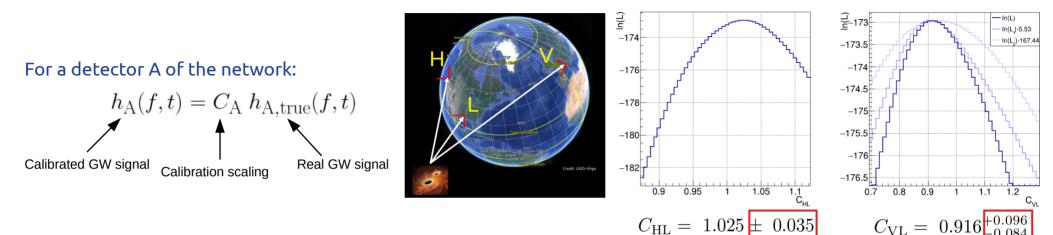
EXTRA SLIDES

- NCal improvements for O5 and beyond
- Cross-calibration of the GW network using astrophysical sources


NCal improvements for O5 and beyond

NCal improvements:

- More powerful motors to cover a large frequency range (currently: motors 70 W)
- Rotor under vacuum (currently: in air)
- Magnetic bearing (currently: classical ball bearings)
 - Advantages: High rotor speed and reduced vibrations
 - Drawbacks: Magnetic coupling (?) and large stress
- Upgraded suspensions if needed


ANR ACALCO: Advanced gravitational waves detector CALibration for accurate COsmology

- Joint project between IPHC (NCal) and LAPP (PCal)
- Towards a sub-percent accuracy on the reconstructed h(t)
- Current R&D is useful to prepare for third generation detectors

Einstein Telescope

Cross-calibration of the GW network using astrophysical sources

- Building a likelihood for the relative calibration factors:
 - \rightarrow For a pair of detectors AB : C_{_{AB}} = C_{_{A}} / C_{_{B}}
 - \rightarrow Simulations of astrophysical signals and Monte-Carlo study
- Using the SNR of the GW events in each pair of detectors:
 - \rightarrow Sky location (+ time of flight)
- Using the fraction of GW events seen in each pair of detectors
 - \rightarrow Heterogeneous sensitivities

C. Alléné et al, 2022, arXiv:2204.00337