Overview of O3 cosmological results

S. Mastrogiovanni on behalf of the LIGO, Virgo KAGRA collaboration Virgo France Cosmology meeting, Paris, 21th June 2022

The standard cosmological model?

According to General Relativity, and confirmed by many observations, the Universe is expanding with a rate described by

$$\frac{H(z)}{H_0} = \sqrt{\Omega_{m,0}(1+z)^3 + \Omega_{\Lambda} + \Omega_r(1+z)^4 + \Omega_k(1+z)^2}$$
Hubble Dark matter Dark energy Radiation Curvature

Hubble Dark matter Dark energy Radiation Curvature constant

Despite its success in the standard cosmological model suffers:

> Theoretical problems: What is the nature of Dark Energy?

W. Freedman, Nature Astronomy, 1, 0169 (2017)

Observational problems: Why the measure of the Hubble constant does not agree at the level of the CMB and today? (There is ~5 sigma [A. Reiss, arxiv: 2112.04510] discrepancy)

GW170817

- p(H₀ | GW170817) Planck¹⁷ SHoES18 0.04 *p*(*H*₀) (km⁻¹ s Mpc) 200 co.0 0.01 0.00 60 70 50 80 an 100 110 120 130 140 $H_0 (\rm km \, s^{-1} \, Mpc^{-1})$

- A BNS merger at ~40 Mpc.
- The identified hosting galaxy, NGC4993, is located at redshift ~0.01.
- GW arrived 1.74s before its associated GRB.

anR

Pro: No electromagnetic counterpart needed

ARTEMIS

Pro: No electromagnetic counterpart needed

ARTEMIS

Pro: No electromagnetic counterpart needed

Pro: No electromagnetic counterpart needed

The galaxy catalog method

Gray, **SM**+, 2020 PRD

ARTEMIS

- Check the galaxy density profile w.r.t the GW localization
- **Cons:** Need to keep under control galaxy catalog completeness

The Mass distribution method

• Infer redshift from *redshifted masses* and mass features in the BBHs mass spectra

Simone Mastrogiovanni - Virgo France meeting, 21st June 2022

How do we measure the redshift?

Methods based on complementary observations

Direct EM counterparts: e.g. a GRB, Kilonova or AGN flare

Statistical association with galaxy surveys

GW clustering properties

Quadruply lensed GW events

Methods based on Astrophysical Models

□ Knowledge of the star formation rate

ARTEMIS

Source-frame mass knowledge

Equation of state and Tidal deformability

Latest results with O3 from the LVK collaboration

We presented two analyses to infer cosmological parameters with Dark Standard Sirens in [LVK+,arXiv:2111.03604]

- Joint cosmological and source mass analysis: We use 42 confident BBHs with detected SNR>11.
- Dark siren analysis with the GLADE+ [G. Dalya+, arXiv:2110.06184] catalog: All the 47 Compact binaries events with SNR>11.

anR

Latest O3 results from the LVK collaboration: source mass

- We inferred jointly the source mass distribution of BBHs and the value of the Hubble constant, Dark Matter fraction and and Dark Energy Equation of State parameter.
- We employed 3 phenomenological mass models: A truncated power law, a power law+peak and a broken power law.
- We obtain that the truncated power law model is disfavored w.r.t the other two by a factor of ~100.
- For the two preferred models we obtain consistent constraints on the Hubble constant.
 - LVK+,arXiv:2111.03604

SNR>11

Latest O3 results from the LVK collaboration: source mass

лnR

ARTEMIS

 BBHs population parameters that correlate with the determination of the Hubble constant are parameters governing source mass features in the spectrum and the rate evolution parameter.

Combining with GW170817

Latest O3 results from the LVK collaboration: Galaxy catalogs

- The best localized event from O1, O2 and O3 without EM counterpart is GW190814.
- Apart from G190814, GLADE+ is highly incomplete for most of the GW events considered.

anR

LVK+,arXiv:2111.03604

Latest O3 results from the LVK collaboration: Galaxy catalogs

- The galaxy catalog results are dominated by the BHs population assumptions.
- This is due to the incompleteness of the galaxy catalog and the large localization error for the GW events.

лnR

ARTEMIS

Simone Mastrogiovanni - Virgo France meeting, 21st June 2022

Latest O3 results from the LVK collaboration: Robustness of assumptions

ARTEMIS

Latest O3 results from the LVK collaboration

Description	Galaxy catalog	BBH mass model	$H_0^{ m HDI}$	$H_0^{ m sym}$
			$[{\rm km~s^{-1}~Mpc^{-1}}]$	$[{\rm km \ s^{-1} \ Mpc^{-1}}]$
No galaxy catalog, Marginaliz- ing over population model, 42 events	2	TRUNCATED	109^{+43}_{-54} (69 ⁺²¹)	104_{-77}^{+74} (79 ⁺⁴⁴ ₋₁₉)
		POWER LAW + PEAK	50^{+37}_{-30} (68 ⁺¹² ₋₈)	62^{+90}_{-42} (72 ⁺³⁰ ₋₁₃)
	Ŧ	BROKEN POWER LAW	44^{+52}_{-24} (68 ⁺¹³ ₋₈)	66^{+98}_{-47} (73 ⁺³⁴ ₋₁₄)
Using galaxy catalog, Fixed population model, 47 events	GLADE+ K-band	Power Law + Peak	67^{+13}_{-12} (68 ⁺⁸ ₋₆)	68^{+25}_{-21} (70 ⁺¹⁷ ₋₁₃)
	GLADE+ B_J -band	Power Law + Peak	67^{+14}_{-12} (68 ⁺⁹ ₋₆)	69^{+25}_{-23} (71 ⁺¹⁸ ₋₁₂)

- First determination of the Hubble constant with source mass of BBHs, improving results from GWTC-2 by 17%.
- GLADE+ Galaxy catalog results are strongly dominated by BBHs population assumptions. The only event informative on the Hubble constant with GLADE+ is GW190814.
- Results on Hubble constant are consistent with works using DESI and well localized GW events [A. *Palmese+, arXiv:2111.06445*] from O3 and studies using GLADE and well localized sources from O3a [*Finke et al JCAP08(2021)026*] and O3 studies with mass functions [*Mancarella+, arXiv:2112.05728*].

Future challenges for GW cosmology (a not-complete list)

• GW signal challenges:

- Effect of non-stationary noise on the determination of cosmological parameters [S. Mozzon+ arXiv:2110.11731].
- Data miscalibration could bias the Hubble constant estimation for high SNR events.
- Inclusion of physically motivated calibration models [E.Payne+, PRD, 102, 122004 (2020)].
- Waveform approximant systematics and inclusion of spins.
- Population challenges:
 - Redshift dependent models for mass distributions of compact objects.
 - Strong and weak lensing.

- Electromagnetic emission challenges:
 - Low-latency identification of the transient EM emission when we are provided with ~10 events per week.
 - Systematics bias of the EM emission detection due to collimated emission [H. Chen, PRL. 125, 201301 (2020)].
 - EM emission for BBHs and NSBH? What are their systematic biases?
- Galaxy catalogs challenges:
 - All-sky and deep galaxy survey.
 - Systematics in Photometric and spectroscopic redshift reconstructions.
 - Effect of galaxy clustering and completeness description of the catalog.

Backup slides

The selection bias

ARTEMIS

ANR

Simone Mastrogiovanni - Virgo France meeting, 21st June 2022

The selection bias

The inference of the population properties requires knowledge of astrophysics, data analyses and detector properties

$$\mathcal{L}(x|\Lambda, N) = \underbrace{e^{-N_{\exp}(\Lambda)} N_{\exp}^{N_{obs}}}_{i=1} \prod_{i=1}^{N_{obs}} \underbrace{\frac{\int \mathcal{L}(x_i|\theta, \Lambda) \tau(\theta|\Lambda) d\theta}{\frac{N_{\exp}}{N}}}_{\underline{N}}$$

- Poisson distribution: Informative on the events rate.
- Gravitational-wave likelihood of the single event (parameter estimation)

anR

- Astrophysical motivated prior (we infer it).
- Selection bias due to our detector capabilities (Knowledge of the detection process)

ARTEMIS

Palmese+ arXiv:2111.06445 DESI and 8 well-localized (<400 deg2) GW events

Finke+ JCAP 08 026 (2021) GWTC-2 events with GLADE+ and different completeness cuts

ANR

Mancarella+, arXiv:2112.05728 BBHs with single mass model

