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Neutron Capture: s-process

1. Nuclear Fusion: Overcoming Coulomb Barrier
1. Higher charge -> higher barrier

2.No charge? No Coulomb Barrier. Higher o for interaction.

3.Neutrons inside stars penetrate seed nuclei creating heavy elements
12X +n -5 X + n(redline)

AZ
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2.Unstable - Beta-Decay: 57 X +n »77 Y+e™ + 0D Po
3.S-process Bi
4.Slow, inefticient, can’t reach all elements. Pb
1. Stops at lead, can’t reach Uranium, thorium, etc. Tl
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Binary Neutron Star Merger and its Thermal Emission -
General Picture

1. Neutron Stars smash into each other - large neutron flux, many heavy elements are
synthesized.

2. Isotopes synthesized by the r-process are neutron-rich and unstable.
3. Radioactive decay, releasing ~MeV y-rays, a and -particles that heat the plasma.

4. Plasma emits thermal radiation that we measure - kilonova.

5. Hot plasma expands, cools down, eventually too faint to see.

=> Can we tell which heavy elements, and what amount, were synthesized by
analyzing kilonova’s thermal emission?

* additional EM emission such as synchrotron, gamma-ray burst, etc.



Kilonovae Modeling Challenge
Merger —D Ejecta —D R—process—D Radioactive Plasma %>Radiative Transfer

Strong Gravity .. : :
Mass Nuclear masses Radioactive Decays Atomic physics
Nuclear Matter
General Relativistic
, , beta, alpha decays Particle .
Hydrodynamics Velocity o ) L Opacities
fission thermalization
Weak Interactions , , -
Electron Fraction Cloud Dynamics Radiation Approx.

(neutrinos)

Magnetic Fields non-LTE effects



Kilonovae Modeling Challenge
Merger —D Ejecta —D R—process—D Radioactive Plasma %Radiative Transfer

Strong Gravity .. : :
Mass Nuclear masses Radioactive Decays Atomic physics
Nuclear Matter
General Relativistic ,
, , beta, alpha decays Particle .
Hydrodynamics Velocity o ) Opacities
fission
Weak Interactions , . -
Electron Fraction Cloud Dynamics Radiation Approx.

(neutrinos)

Magnetic Fields non-LTE effects



GW170817 and Simulations
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Figure 6. Summary of the ejecta properties of our models. Diamonds mark the dynamical ejecta, crosses include the contribution of the spiral-wave wind for the long-
lived models, and triangles are an estimate of the total ejecta mass on a secular timescale, assuming 40% of the disk mass is unbound on secular timescales. The ejecta
mass is shown is terms of the mass-averaged velocity (left) and of the averaged electron fraction (right). The filled blue and red patches are the expected values of
ejecta mass and velocity for blue and red components of AT2017gfo compiled by Siegel (2019), based on Villar et al. (2017).

Nedora et al., 2021
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Radioactive Release

* SNia - primary heating by: *°Ni —>° Co —>° Fe.

frdm.yl6 — frdm.y28 hfb22.y16 hfb27.y16 dz33.y16 — unedfkz.yl6

+
) NMeV }/_ra'ys a'nd ﬁ * unedfxryl6 = unedfy24 — sly4yl8 — sly4dy2l — tfyl6
* Kilonovae - primary heating...? T . &
* Dependent on: ER —
np & N
. Y,=—/ neutron-richness |
" e St 0 H H H
* low Y, -> more heavy elements | o LML L RN
time (s) model index
’ Myjs Vei » ejecta profile Barnes et al., 2020

* Nuclear physics uncertainties
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* According to Arnett model for supernovae, peak-
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1,.(E, ) - energy-loss timescale of particle.

Initially for all decay products (excluding neutrinos) ;. <K< t = Qdep = 2 Q'ﬂ
p=a.p.y

* Electron that is emitted immediately loses all its energy = Efficient Thermalization

But over time 7, ~ t — Qdep < Z Qﬂ
u=a.p.y

* Electron gradually loses its energy = Inefficient Thermalization

* Interpreting kilonovae observations requires understanding the thermalization of decay products (for

t 2 1 — 2 days, y-particles mostly escape, leaving e, a-particles as main heating source)

* I examine decay particle thermalization for charged decay products (e, a-particles) based on extensive

nucleosynthesis simulations.



How do Electrons Lose Energy?

Electron Losses
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Figure 1: Energy loss rate of electrons propagating in a singly ionized y. =1 Xe plasma (Z = 54, A = 131). We
take hw, = 10~7eV. Shaded area shows typical average initial energies of S-decay electrons. For most relevant

energies, ionization losses dominate.

Shenhar et al., in prep.



Three primary loss mechanisms:

How do Electrons Lose Energy?

plasma losses
ionization losses

Bremmstrahlung

Electron Losses
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energies, ionization losses dominate.

Shenhar et al., in prep.
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* Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).

* Compute time-dependent yield abundances and time-dependent energy spectra for electrons and as
o . : dE dN
* Calculate energy deposition for the different runs: Q,,(f) = | dE E(E’ 1) X E(E, 1)

dE(E N E dE
—_— 5 e —_— -y —
e dt t p dX

adiabatic stopping power

~——

dN . o 0 (dN dN
* —(E, t) is the electron distribution, dictated by: — (—) =—-Vg <—> + S
dE ot \dE dE

* S(E, 1) is the source function compiled from the nucleosynthesis.
* Define and calculate #, and ¢, - inefficient thermalization timescales - for different nucleosynthesis runs:

* Check whether we can find simple rule governing behavior of #,and z,,.

* We have some preliminary results... to be continued



