
Kilonovae and Charged 
Particle Thermalization

Ben Shenhar, Phd Advisor: Eli Waxman 
Weizmann Institute of Science, Rehovot, Israel

Transient Universe 2023, Cargese



Origin of Elements & Nucleosynthesis



Origin of Elements & Nucleosynthesis

1.Most H, He created during BB



Origin of Elements & Nucleosynthesis

1.Most H, He created during BB
2.Elements up to Fe created by nuclear fusion in stars or during 

Supernovae.



Origin of Elements & Nucleosynthesis

1.Most H, He created during BB
2.Elements up to Fe created by nuclear fusion in stars or during 

Supernovae.

3.What about the rest?



Origin of Elements & Nucleosynthesis

1.Most H, He created during BB
2.Elements up to Fe created by nuclear fusion in stars or during 

Supernovae.

3.What about the rest?



Neutron Capture: s-process



Neutron Capture: s-process

1.Nuclear Fusion: Overcoming Coulomb Barrier 
1. Higher charge -> higher barrier



Neutron Capture: s-process

1.Nuclear Fusion: Overcoming Coulomb Barrier 
1. Higher charge -> higher barrier

2.No charge? No Coulomb Barrier. Higher   for interaction.σ



Neutron Capture: s-process

1.Nuclear Fusion: Overcoming Coulomb Barrier 
1. Higher charge -> higher barrier

2.No charge? No Coulomb Barrier. Higher   for interaction.σ
3.Neutrons inside stars penetrate seed nuclei creating heavy elements 

1.  (red line)  

2.Unstable - Beta-Decay:    (blue line)                                                                                         (blue line) 
3.S-process 

A
Z X + n →A+1

Z X + n
A+1
Z X + n →A+1

Z+1 Y + e− + ν̄



Neutron Capture: s-process

1.Nuclear Fusion: Overcoming Coulomb Barrier 
1. Higher charge -> higher barrier

2.No charge? No Coulomb Barrier. Higher   for interaction.σ
3.Neutrons inside stars penetrate seed nuclei creating heavy elements 

1.  (red line)  

2.Unstable - Beta-Decay:    (blue line)                                                                                         (blue line) 
3.S-process 

A
Z X + n →A+1

Z X + n
A+1
Z X + n →A+1

Z+1 Y + e− + ν̄

4.Slow, inefficient, can’t reach all elements. 
1. Stops at lead, can’t reach Uranium, thorium, etc.
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2.Heavy elements, such as Uranium require an environment with a large neutron 
flux to allow a rapid capture of neutrons by nuclei - before beta-decay.

3.s-process: 𝑓𝑛 ∼ 105 − 1011𝑐𝑚−2𝑠−1

4.r-process: 𝑓𝑛 ∼ 1022 − 1030𝑐𝑚−2𝑠−1

5.We need neutron-rich environment
1. Neutron Star Mergers
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Binary Neutron Star Merger and its Thermal Emission - 
General Picture

1.  Neutron Stars smash into each other - large neutron flux, many heavy elements are 
synthesized.

2. Isotopes synthesized by the r-process are neutron-rich and unstable.

3. Radioactive decay, releasing ~MeV 𝛾-rays,  and 𝛽-particles that heat the plasma. α

4. Plasma emits thermal radiation that we measure - kilonova.
5. Hot plasma expands, cools down, eventually too faint to see.

=> Can we tell which heavy elements, and what amount, were synthesized by 
analyzing kilonova’s thermal emission?

* additional EM emission such as synchrotron, gamma-ray burst, etc.
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GW170817 and Simulations

Nedora et al., 2021
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Radioactive Release
• SN1a - primary heating by: . 56Ni →56 Co →56 Fe

• MeV -rays and .∼ γ β+

• Kilonovae - primary heating…? 
• Dependent on:

•  =  ,  neutron-richness Ye
np

nn

• low  -> more heavy elementsYe

•  , ejecta profilemej, vej

• Nuclear physics uncertainties
Barnes et al., 2020
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GW170817
• According to Arnett model for supernovae, peak-

luminosity occurs when:  τ =
c
vej

• After peak luminosity:   
• Luminosity is simply the heat deposited in the plasma

L ≈ ·Qdep

•Can we reconstruct nucleosynthesis from ?·Qdep

• But  ! Not all energy released is thermalized in the 
plasma.

·Qdep ≠ ·Q

• after  days , -rays are not thermalized, 
leaving -electrons as primary heating source.

t ≳ 1 − 2 γ
β

Waxman et al., 2018
𝐿 ≈ �̇�𝑑𝑒𝑝

heating break: 
change in  or 

?

·Q
·Qdep
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•  - energy-loss timescale of particle.tloss(E, t)

• Initially for all decay products (excluding neutrinos)  

• Electron that is emitted immediately loses all its energy  Efficient Thermalization

tloss ≪ t → ·Qdep = ∑
μ=α,β,γ

·Qμ

≡

• But over time  

• Electron gradually loses its energy  Inefficient Thermalization

tloss ∼ t → ·Qdep < ∑
μ=α,β,γ

·Qμ

≡
• Interpreting kilonovae observations requires understanding the thermalization of decay products (for 

 days , -particles mostly escape, leaving -particles as main heating source)t ≳ 1 − 2 γ e, α
• I examine decay particle thermalization for charged decay products ( -particles) based on extensive 

nucleosynthesis simulations.
e, α
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How do Electrons Lose Energy?
Electron Losses• Three primary loss mechanisms: 

• plasma losses  
• ionization losses 
• Bremmstrahlung 

Shenhar et al., in prep.
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• Define and calculate  - inefficient thermalization timescales - for different nucleosynthesis runs:te and tα
• Check whether we can find simple rule governing behavior of  . te and tα
• We have some preliminary results… to be continued


