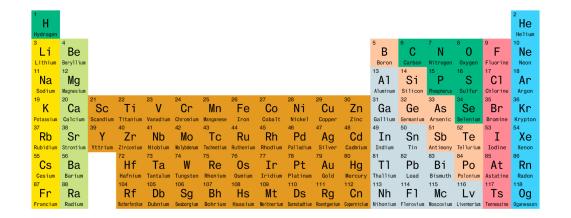
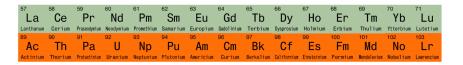
Kilonovae and Charged Particle Thermalization

Ben Shenhar, Phd Advisor: Eli Waxman Weizmann Institute of Science, Rehovot, Israel

Transient Universe 2023, Cargese

1 H	H ydrogen																	² He Helium
3	Li	⁴Be											⁵B	6 C	7 N	8 ∩	° F	Ne
	ithium	Beryllium											Boron	Carbon	IN NG AN	0	Fluorine	Neon
1		12											13	14	Nitrogen 15	0xygen 16	17	18
ľ	Na	Mg											Ä1	Si	Ρ	ຶS	ÜC1	År
	Sodium	Magnesium											Aluminum	Silicon	Phosphorus	Sulfur	Chlorine	Argon
19			21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	Κ	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
P	otassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
3		38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
R	ubidium	Strontium	Yttrium	Zirconium	Niobium	Mo1ybdenum	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antimony	Tellurium	Iodine	Xenon
5		56		72	73	74	75	76	77_	78	79	80	81	82	83	84	85	86
	Cs	Ba		Hf	Та	W	Re	0s	Ir	Pt	Au	Hg	T1	Pb	Bi	Po	At	Rn
(Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
8	7_	88		104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	Fr	Ra		Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	F1	Mc	Lv	Ts	0g
F	rancium	Radium		Rutherfordium	Dubnium	Seaborgium	Bohrium	Hassium	Meitnerium	Darmstadtium	Roentgenium	Copernicium	Nihonium	Flerovium	Moscovium	Livermorium	Tennessine	Oganesson

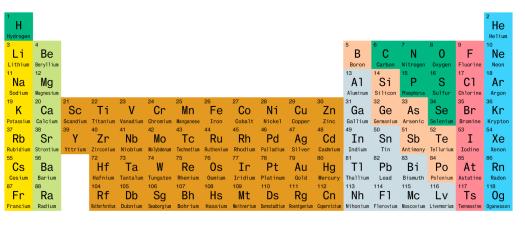

 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71


 Lanthau
 Cerium
 Prasodytiu
 Neodeliniu
 Promethiu
 Samarium
 Europiu
 Gdolinium
 Terbium
 Dysprostum
 Holenium
 Ebrium
 Thulium
 Ytterbium
 Lutium

 89
 90
 91
 92
 93
 94
 96
 96
 97
 98
 99
 100
 101
 102
 103

 Acc
 Th
 Pa
 U
 Np
 Pu
 Am
 Curium
 Earlewing
 Einsteinium
 Fermium
 Medelevium
 Nobelium
 Lamericum

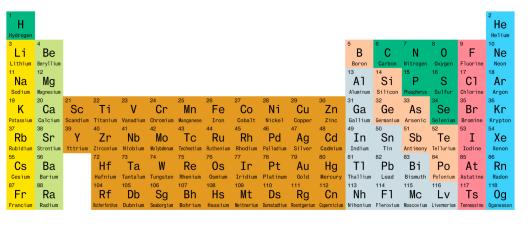
1.Most H, He created during BB

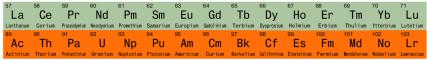


1.Most H, He created during BB

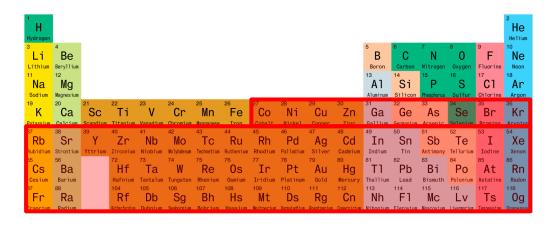
2.Elements up to Fe created by nuclear fusion in stars or during

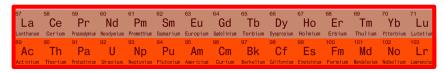
Supernovae.

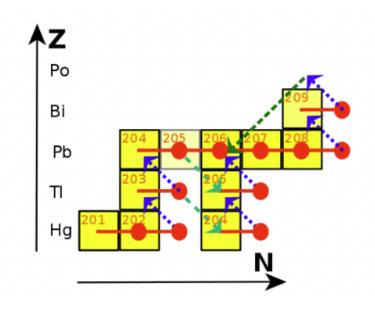

57 La	58 Ce	⁵⁹ Pr		⁶¹ Pm		⁶³ Eu		⁶⁵ Tb		⁶⁷ Ho			Yb	
Lanthanum	Cerium	Praseodymium										Thulium		
89	90	91	92			95			98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

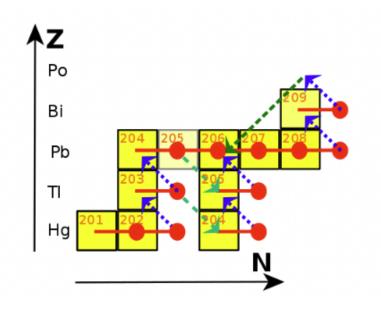

1.Most H, He created during BB

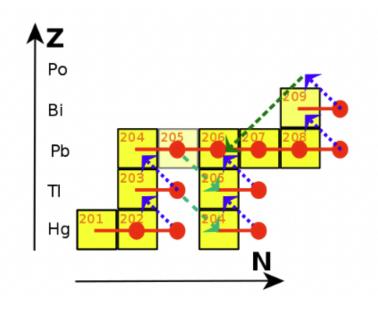
2. Elements up to Fe created by nuclear fusion in stars or during


Supernovae.


3.What about the rest?



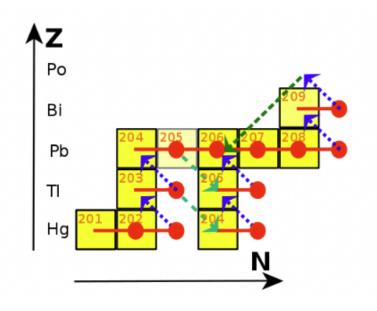

- 1.Most H, He created during BB
- 2.Elements up to Fe created by nuclear fusion in stars or during
 - Supernovae.
- 3.What about the rest?



1. Nuclear Fusion: Overcoming Coulomb Barrier 1. Higher charge -> higher barrier

1. Nuclear Fusion: Overcoming Coulomb Barrier 1. Higher charge -> higher barrier

2.No charge? No Coulomb Barrier. Higher σ for interaction.



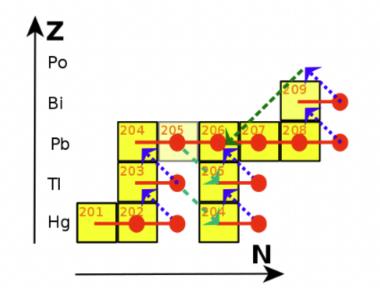
1. Nuclear Fusion: Overcoming Coulomb Barrier 1. Higher charge -> higher barrier

2.No charge? No Coulomb Barrier. Higher σ for interaction.

3.Neutrons inside stars penetrate seed nuclei creating heavy elements

1. ${}^{A}_{Z}X + n \rightarrow^{A+1}_{Z}X + n$ (red line) 2. Unstable - Beta-Decay: ${}^{A+1}_{Z}X + n \rightarrow^{A+1}_{Z+1}Y + e^{-} + \bar{\nu}$ (blue line) 3. S-process

1. Nuclear Fusion: Overcoming Coulomb Barrier 1. Higher charge -> higher barrier

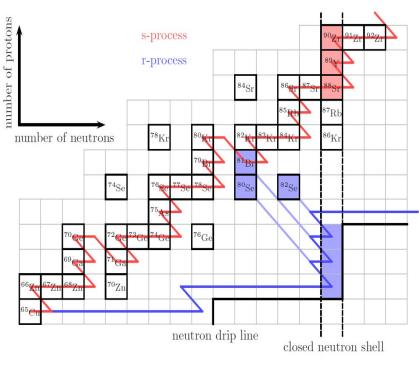

2.No charge? No Coulomb Barrier. Higher σ for interaction.

3.Neutrons inside stars penetrate seed nuclei creating heavy elements

1.
$${}^{A}_{Z}X + n \rightarrow^{A+1}_{Z}X + n$$
 (red line)
2. Unstable - Beta-Decay: ${}^{A+1}_{Z}X + n \rightarrow^{A+1}_{Z+1}Y + e^{-} + \bar{\nu}$ (blue line)
3. S-process

4. Slow, inefficient, can't reach all elements.

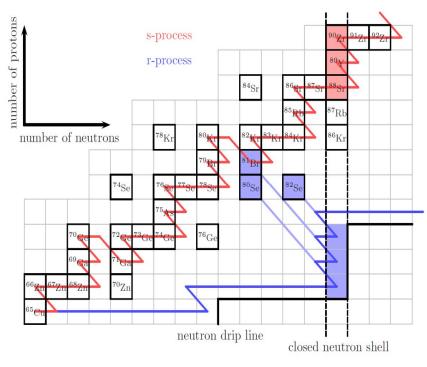
1. Stops at lead, can't reach Uranium, thorium, etc.


2.Heavy elements, such as Uranium require an environment with a **large** neutron flux to allow a **rapid** capture of neutrons by nuclei - **before** beta-decay.

- 2.Heavy elements, such as Uranium require an environment with a **large** neutron flux to allow a **rapid** capture of neutrons by nuclei **before** beta-decay.
- 3.s-process: $f_n \sim 10^5 10^{11} cm^{-2} s^{-1}$

- 2.Heavy elements, such as Uranium require an environment with a **large** neutron flux to allow a **rapid** capture of neutrons by nuclei **before** beta-decay.
- 3.s-process: $f_n \sim 10^5 10^{11} cm^{-2} s^{-1}$ 4.r-process: $f_n \sim 10^{22} - 10^{30} cm^{-2} s^{-1}$

2.Heavy elements, such as Uranium require an environment with a **large** neutron flux to allow a **rapid** capture of neutrons by nuclei - **before** beta-decay.


3.s-process:
$$f_n \sim 10^5 - 10^{11} cm^{-2} s^{-1}$$

4.r-process: $f_n \sim 10^{22} - 10^{30} cm^{-2} s^{-1}$

- 2.Heavy elements, such as Uranium require an environment with a **large** neutron flux to allow a **rapid** capture of neutrons by nuclei **before** beta-decay.
- 3.s-process: $f_n \sim 10^5 10^{11} cm^{-2} s^{-1}$ 4.r-process: $f_n \sim 10^{22} - 10^{30} cm^{-2} s^{-1}$

5.We need neutron-rich environment

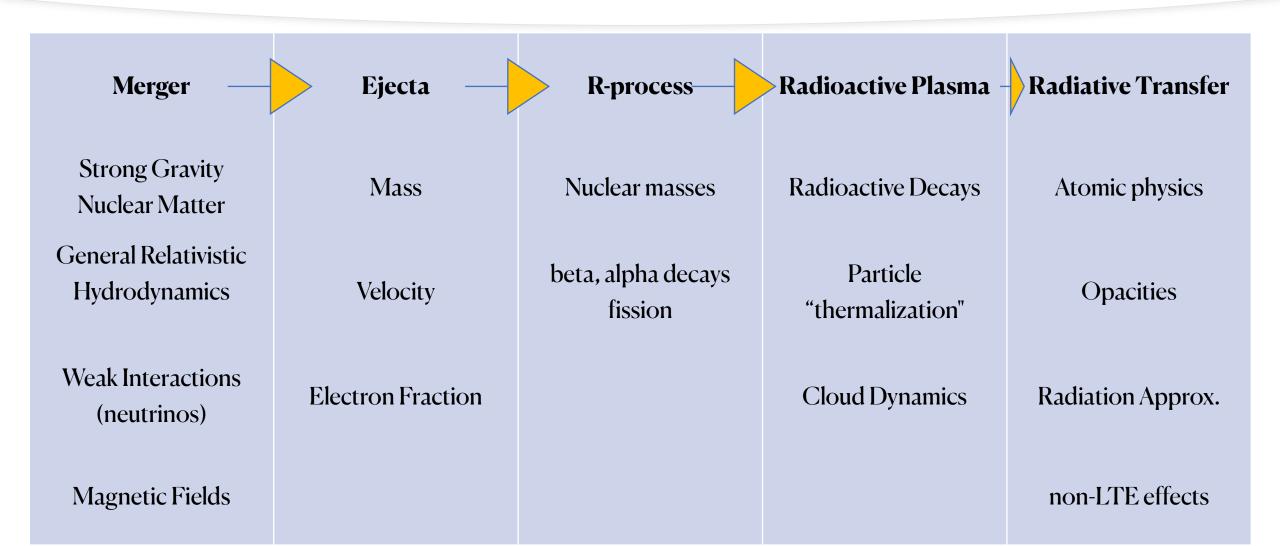
1. Neutron Star Mergers

1. Neutron Stars smash into each other - large neutron flux, many heavy elements are synthesized.

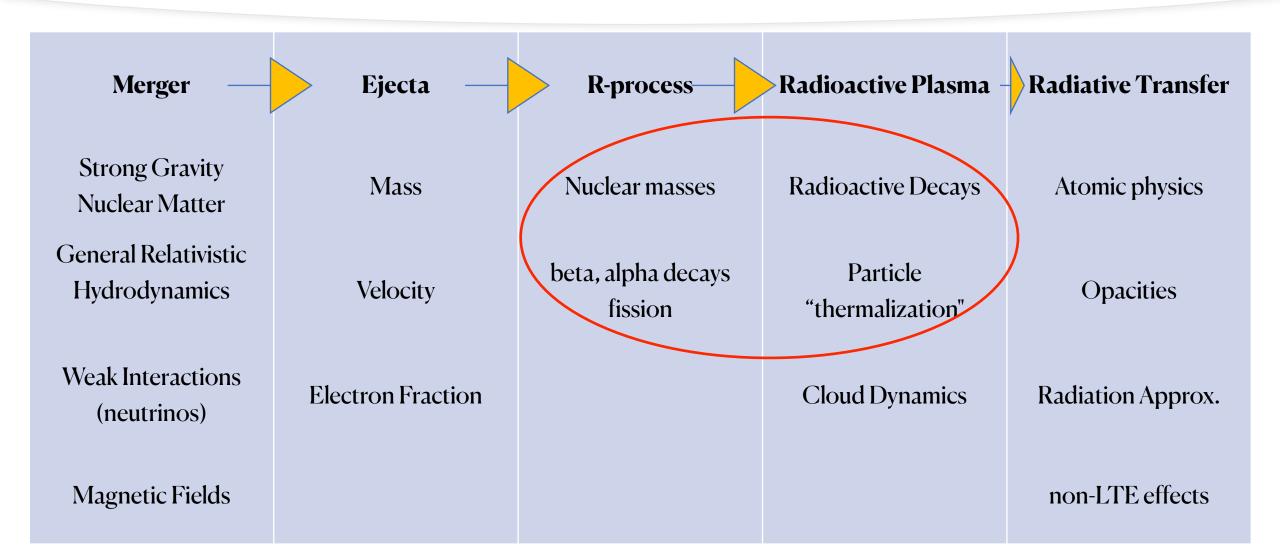
- 1. Neutron Stars smash into each other large neutron flux, many heavy elements are synthesized.
- 2. Isotopes synthesized by the r-process are neutron-rich and unstable.

- 1. Neutron Stars smash into each other large neutron flux, many heavy elements are synthesized.
- 2. Isotopes synthesized by the r-process are neutron-rich and unstable.
- 3. Radioactive decay, releasing ~MeV γ -rays, α and β -particles that **heat** the plasma.

- 1. Neutron Stars smash into each other large neutron flux, many heavy elements are synthesized.
- 2. Isotopes synthesized by the r-process are neutron-rich and unstable.
- 3. Radioactive decay, releasing ~MeV γ -rays, α and β -particles that **heat** the plasma.
- 4. Plasma emits thermal radiation that we measure kilonova.


- 1. Neutron Stars smash into each other large neutron flux, many heavy elements are synthesized.
- 2. Isotopes synthesized by the r-process are neutron-rich and unstable.
- 3. Radioactive decay, releasing ~MeV γ -rays, α and β -particles that **heat** the plasma.
- 4. Plasma emits thermal radiation that we measure kilonova.
- 5. Hot plasma expands, cools down, eventually too faint to see.

- 1. Neutron Stars smash into each other large neutron flux, many heavy elements are synthesized.
- 2. Isotopes synthesized by the r-process are neutron-rich and unstable.
- 3. Radioactive decay, releasing ~MeV γ -rays, α and β -particles that **heat** the plasma.
- 4. Plasma emits thermal radiation that we measure kilonova.
- 5. Hot plasma expands, cools down, eventually too faint to see.


=> Can we tell which heavy elements, and what amount, were synthesized by analyzing kilonova's thermal emission?

* additional EM emission such as synchrotron, gamma-ray burst, etc.

Kilonovae Modeling Challenge

Kilonovae Modeling Challenge

GW170817 and Simulations

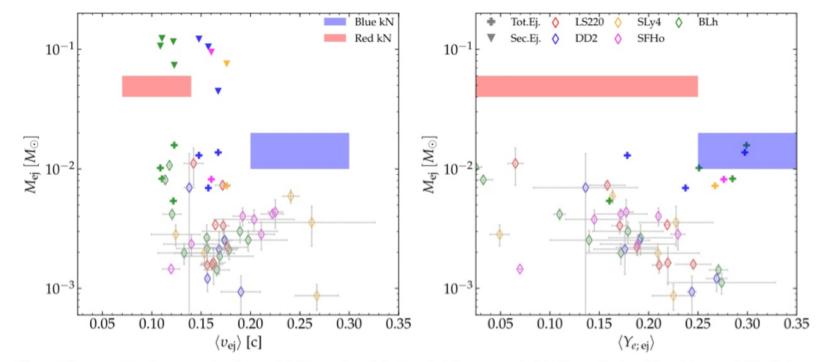


Figure 6. Summary of the ejecta properties of our models. Diamonds mark the dynamical ejecta, crosses include the contribution of the spiral-wave wind for the longlived models, and triangles are an estimate of the total ejecta mass on a secular timescale, assuming 40% of the disk mass is unbound on secular timescales. The ejecta mass is shown is terms of the mass-averaged velocity (left) and of the averaged electron fraction (right). The filled blue and red patches are the expected values of ejecta mass and velocity for blue and red components of AT2017gfo compiled by Siegel (2019), based on Villar et al. (2017).

Nedora et al., 2021

• SN1a - primary heating by: 56 Ni $\rightarrow {}^{56}$ Co $\rightarrow {}^{56}$ Fe.

- SN1a primary heating by: 56 Ni $\rightarrow {}^{56}$ Co $\rightarrow {}^{56}$ Fe.
 - ~MeV γ -rays and β^+ .

- SN1a primary heating by: ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?

- SN1a primary heating by: ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?
- Dependent on:

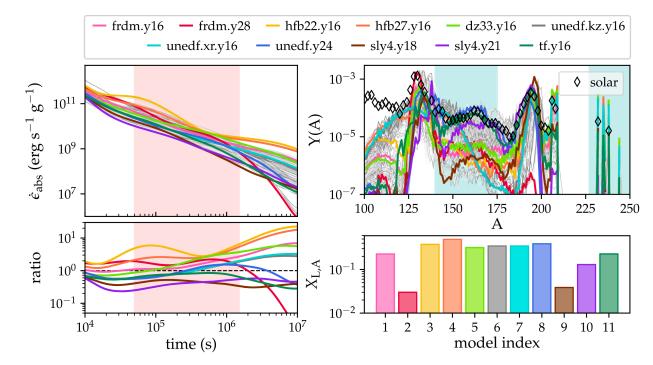
- SN1a primary heating by: ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?
- Dependent on:

•
$$Y_e = \frac{n_p}{n_n}$$
, neutron-richness

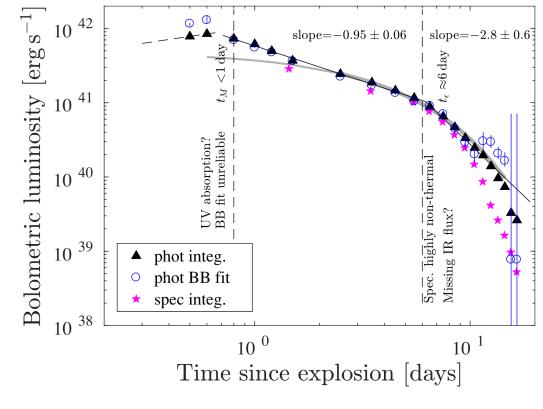
- SN1a primary heating by: ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?
- Dependent on:

•
$$Y_e = \frac{n_p}{n_n}$$
, neutron-richness

• low *Y_e* -> more heavy elements

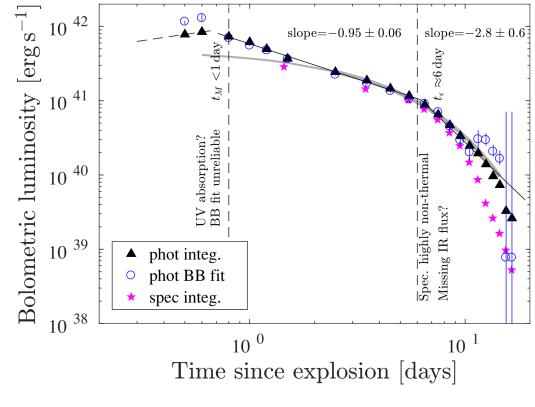

- SN1a primary heating by: ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?
- Dependent on:
 - $Y_e = \frac{n_p}{n_n}$, neutron-richness
 - low *Y_e* -> more heavy elements
 - m_{ej} , v_{ej} , ejecta profile

Radioactive Release

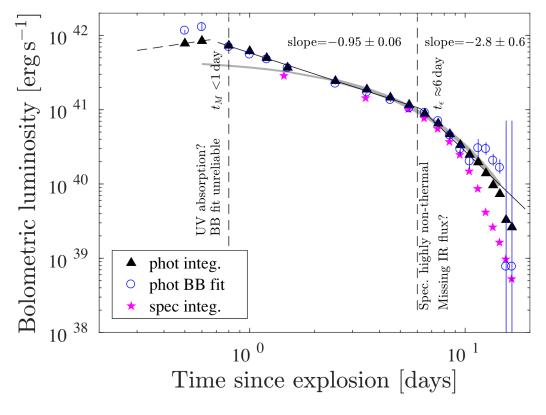

- SN1a primary heating by: ${}^{56}\text{Ni} \rightarrow {}^{56}\text{Co} \rightarrow {}^{56}\text{Fe}$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?
- Dependent on:
 - $Y_e = \frac{n_p}{n_n}$, neutron-richness
 - low *Y_e* -> more heavy elements
 - m_{ej} , v_{ej} , ejecta profile
 - Nuclear physics uncertainties

Radioactive Release

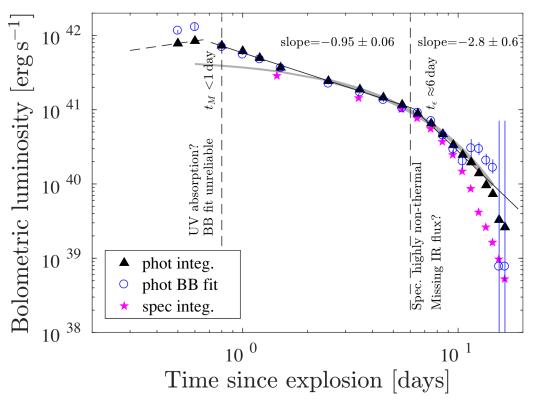
- SN1a primary heating by: ${}^{56}Ni \rightarrow {}^{56}Co \rightarrow {}^{56}Fe$.
 - ~MeV γ -rays and β^+ .
- Kilonovae primary heating...?
- Dependent on:
 - $Y_e = \frac{n_p}{n_n}$, neutron-richness
 - low *Y_e* -> more heavy elements
 - m_{ej} , v_{ej} , ejecta profile
 - Nuclear physics uncertainties

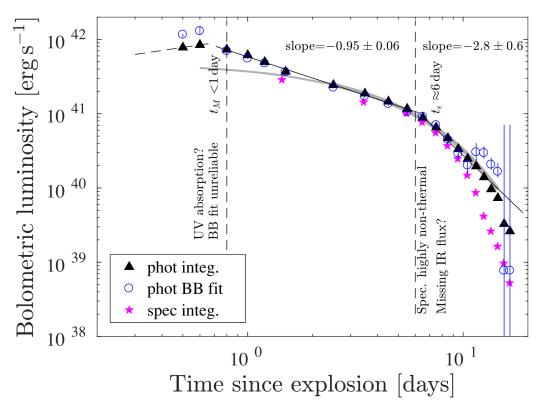


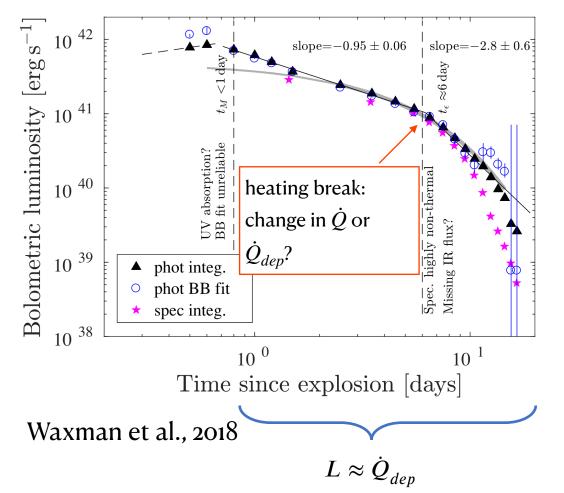
Barnes et al., 2020



GW170817


• According to Arnett model for supernovae, peakluminosity occurs when: $\tau = \frac{c}{v_{ej}}$


- According to Arnett model for supernovae, peakluminosity occurs when: $\tau = \frac{c}{v_{ej}}$
- After peak luminosity: $L \approx \dot{Q}_{dep}$
 - Luminosity is simply the heat deposited in the plasma


- According to Arnett model for supernovae, peakluminosity occurs when: $\tau = \frac{c}{v_{ej}}$
- After peak luminosity: $L \approx \dot{Q}_{dep}$
 - Luminosity is simply the heat deposited in the plasma
- Can we reconstruct nucleosynthesis from \dot{Q}_{dep} ?

- According to Arnett model for supernovae, peakluminosity occurs when: $\tau = \frac{c}{v_{ej}}$
- After peak luminosity: $L \approx \dot{Q}_{dep}$
 - Luminosity is simply the heat deposited in the plasma
- Can we reconstruct nucleosynthesis from \dot{Q}_{dep} ?
- But $\dot{Q}_{dep} \neq \dot{Q}$! Not all energy released is thermalized in the plasma.

- According to Arnett model for supernovae, peakluminosity occurs when: $\tau = \frac{c}{v_{ei}}$
- After peak luminosity: $L \approx \dot{Q}_{dep}$
 - Luminosity is simply the heat deposited in the plasma
- Can we reconstruct nucleosynthesis from \dot{Q}_{dep} ?
- But $\dot{Q}_{dep} \neq \dot{Q}$! Not all energy released is thermalized in the plasma.
- after $t \gtrsim 1 2$ days , γ -rays **are not thermalized**, leaving β -electrons as primary heating source.

• $t_{loss}(E, t)$ - energy-loss timescale of particle.

- $t_{loss}(E, t)$ energy-loss timescale of particle.
- Initially for all decay products (excluding neutrinos) $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$
 - Electron that is emitted **immediately** loses all its energy \equiv **Efficient Thermalization**

- $t_{loss}(E, t)$ energy-loss timescale of particle.
- Initially for all decay products (excluding neutrinos) $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$
 - Electron that is emitted **immediately** loses all its energy **= Efficient Thermalization**
- But over time $t_{loss} \sim t \rightarrow \dot{Q}_{dep} < \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$
 - Electron gradually loses its energy = Inefficient Thermalization

- $t_{loss}(E, t)$ energy-loss timescale of particle.
- Initially for all decay products (excluding neutrinos) $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$
 - Electron that is emitted **immediately** loses all its energy **= Efficient Thermalization**

• But over time
$$t_{loss} \sim t \rightarrow \dot{Q}_{dep} < \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$$

- Electron gradually loses its energy = Inefficient Thermalization
- Interpreting kilonovae observations requires understanding the **thermalization** of decay products (for $t \ge 1 2$ days, γ -particles mostly escape, leaving e, α -particles as main heating source)

- $t_{loss}(E, t)$ energy-loss timescale of particle.
- Initially for all decay products (excluding neutrinos) $t_{loss} \ll t \rightarrow \dot{Q}_{dep} = \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$
 - Electron that is emitted **immediately** loses all its energy **= Efficient Thermalization**

• But over time
$$t_{loss} \sim t \rightarrow \dot{Q}_{dep} < \sum_{\mu=\alpha,\beta,\gamma} \dot{Q}_{\mu}$$

- Electron gradually loses its energy = Inefficient Thermalization
- Interpreting kilonovae observations requires understanding the **thermalization** of decay products (for $t \gtrsim 1 2$ days, γ -particles mostly escape, leaving e, α -particles as main heating source)
- I examine decay particle thermalization for charged decay products (e, α -particles) based on extensive nucleosynthesis simulations.

How do Electrons Lose Energy?

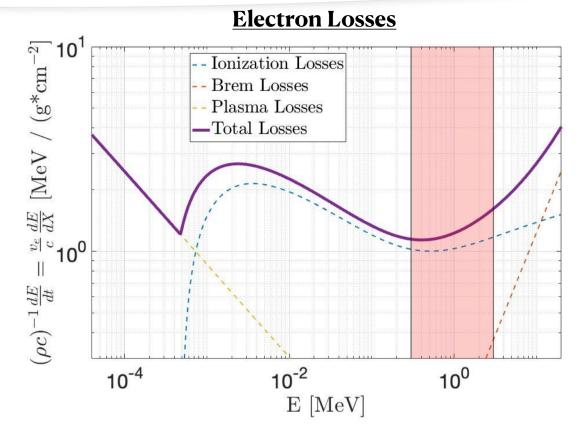


Figure 1: Energy loss rate of electrons propagating in a singly ionized $\chi_e = 1$ Xe plasma (Z = 54, A = 131). We take $\hbar\omega_p = 10^{-7} eV$. Shaded area shows typical average initial energies of β -decay electrons. For most relevant energies, ionization losses dominate.

Shenhar et al., in prep.

How do Electrons Lose Energy?

- Three primary loss mechanisms:
 - plasma losses
 - ionization losses
 - Bremmstrahlung

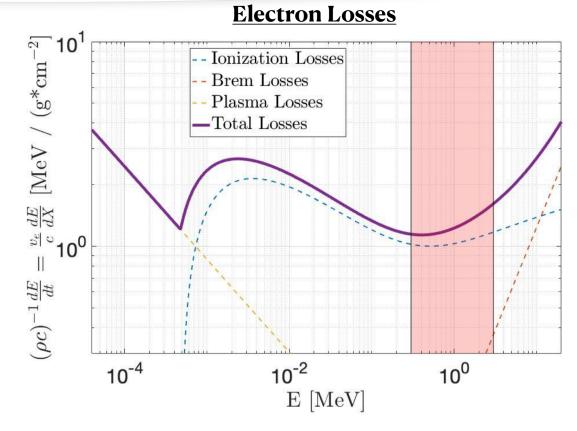


Figure 1: Energy loss rate of electrons propagating in a singly ionized $\chi_e = 1$ Xe plasma (Z = 54, A = 131). We take $\hbar \omega_p = 10^{-7} eV$. Shaded area shows typical average initial energies of β -decay electrons. For most relevant energies, ionization losses dominate.

Shenhar et al., in prep.

• Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).

- Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).
- Compute time-dependent yield abundances and time-dependent energy spectra for electrons and α s

- Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).
- Compute time-dependent yield abundances and time-dependent energy spectra for electrons and α s
- Calculate energy deposition for the different runs: $\dot{Q}_{dep}(t) = \int dE \frac{dE}{dt}(E,t) \times \frac{dN}{dE}(E,t)$

$$\frac{dE}{dt}(E,t) = -\frac{E}{t} -\rho v \frac{dE}{dX}$$

adiabatic stopping power

- $\frac{dN}{dE}(E, t)$ is the electron distribution, dictated by: $\frac{\partial}{\partial t} \left(\frac{dN}{dE}\right) = -\nabla_E \left(\frac{dN}{dE}\right) + S$
- S(E, t) is the source function compiled from the nucleosynthesis.

- Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).
- Compute time-dependent yield abundances and time-dependent energy spectra for electrons and α s
- Calculate energy deposition for the different runs: $\dot{Q}_{dep}(t) = \int dE \frac{dE}{dt}(E,t) \times \frac{dN}{dE}(E,t)$

•
$$\frac{dE}{dt}(E,t) = -\frac{E}{t} -\rho v \frac{dE}{dX}$$

adiabatic stopping power

•
$$\frac{dN}{dE}(E, t)$$
 is the electron distribution, dictated by: $\frac{\partial}{\partial t} \left(\frac{dN}{dE}\right) = -\nabla_E \left(\frac{dN}{dE}\right) + S$

• S(E, t) is the source function compiled from the nucleosynthesis.

• Define and calculate t_e and t_{α} - inefficient thermalization timescales - for different nucleosynthesis runs:

- Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).
- Compute time-dependent yield abundances and time-dependent energy spectra for electrons and α s
- Calculate energy deposition for the different runs: $\dot{Q}_{dep}(t) = \int dE \frac{dE}{dt}(E,t) \times \frac{dN}{dE}(E,t)$

•
$$\frac{dE}{dt}(E,t) = -\frac{E}{t} -\rho v \frac{dE}{dX}$$

adiabatic stopping power

•
$$\frac{dN}{dE}(E, t)$$
 is the electron distribution, dictated by: $\frac{\partial}{\partial t} \left(\frac{dN}{dE}\right) = -\nabla_E \left(\frac{dN}{dE}\right) + S$

- S(E, t) is the source function compiled from the nucleosynthesis.
- Define and calculate t_e and t_{α} inefficient thermalization timescales for different nucleosynthesis runs:
- Check whether we can find simple rule governing behavior of t_e and t_{α} .

- Run nucleosynthesis calculations for different homologously expanding ejecta of uniform densities (with different initial TD properties).
- Compute time-dependent yield abundances and time-dependent energy spectra for electrons and α s
- Calculate energy deposition for the different runs: $\dot{Q}_{dep}(t) = \int dE \frac{dE}{dt}(E,t) \times \frac{dN}{dE}(E,t)$

•
$$\frac{dE}{dt}(E,t) = -\frac{E}{t} -\rho v \frac{dE}{dX}$$

adiabatic stopping power

•
$$\frac{dN}{dE}(E, t)$$
 is the electron distribution, dictated by: $\frac{\partial}{\partial t} \left(\frac{dN}{dE}\right) = -\nabla_E \left(\frac{dN}{dE}\right) + S$

- S(E, t) is the source function compiled from the nucleosynthesis.
- Define and calculate t_e and t_{α} inefficient thermalization timescales for different nucleosynthesis runs:
- Check whether we can find simple rule governing behavior of t_e and t_{α} .
- We have some preliminary results... to be continued