

Kilonova In Short Gamma Ray Bursts

The Transient Universe 2023, IESC Cargèse

Paramvir Singh

In collaboration with:

Giulia Stratta, Andrea Rossi, Mattia Bulla and Luciano Rezzolla

Hessian Research Cluster ELEMENTS, Giersch Science Center, Goethe University Frankfurt, Germany Institute for Theoretical Physics, Goethe University Frankfurt, Germany

Outline

- Introduction: short and long of GRBs
- Timescales of observations and compact mergers
- Electromagnetic counterparts: afterglow and kilonova
- Sample of the short GRBs
- Radiative transfer code: POSSIS
- Preliminary results

Short And Long Gamma Ray Bursts

Timescales Of The Observations

Light curves of short and long GRBs afterglow

Timescales Of Compact Mergers

Electromagnetic Counterparts

Afterglow The emission from jet in the X-rays, optical and radio. Arising due to synchrotron emission from the relativistic jet.

GRB 160821B at z = 0.1619

Kilonova The bright component seen at late time. Thermal contribution from radioactive decays of the r-process nuclei.

Outline Of Our Approach

- Investigate the past short GRBs with known redshift.
- Evaluate UV/Optical/NIR and X-ray data for an evidence of kilonovae.
- Explore the kilonova parameter space with state-of-the-art models.
- Constrain the properties:
 - Mass and velocity:
 - Dynamical ejecta
 - Post merger wind
 - Electron fraction
 - Binary parameters and EOS

From merger to light curves

Sample Of Short GRBs

GRBs with KN	Redshift	T ₉₀ (sec)	EE or Hybrid
<u>050709</u>	0.1607	0.07	✓
050724	0.254	98	✓
<u>060505</u>	0.089	4	✓
060614	0.125	108.7	✓
<u>130603B</u>	0.3568	0.8	Short
150101B	0.134	0.018	Short
<u>160821B</u>	0.1619	0.48	Short
<u>180618A</u>	0.52	47.4	✓
200522A	0.5536	0.62	Short
<u>211211A</u>	0.0763	51.4	✓
<u>230307A*</u>	0.065*		

Redshift distribution of full sample

Cases under investigation

Radiative Transfer Code: POSSIS

- 3D Monte Carlo radiative transfer code.
- Depends on the local values of density, electron fraction and temperature.
- Dynamical ejecta and post-merger disk wind.
- _{Vwind} = [0.05, 0.10, 0.15] c
- $m_{wind} = [0.010, 0.050, 0.090, 0.130] M_{\odot}$
- v_{dyn} = [0.15, 0.20, 0.25] c
- \circ m_{dyn} = [0.001, 0.005, 0.010] M $_{\odot}$
- Ye = [0.15, 0.20, 0.25]

Density and electron fraction distribution

Example: GRB 050709

- IR component allows for all v_{wind} but favors lower m_{wind} < 0.130, 0.090 M_☉
- Electron fraction is expected to be low

≻ Ye < 0.25

Example: GRB 160821B

- Optical is bright for cases with v_{wind} 0.05c. Additional constraints with m_{wind} < 0.130, 0.090 M₀
- IR light curves spread evenly, with dependence on m_{wind} < 0.130, 0.090, 0.050 M_☉

• Ye < 0.25

GRB160821B [z = 0.1619]

160821B (KN and Afterglow)

Summary And Outlook

- The compact mergers either BNS or BHNS can produce the Short GRBs.
- The binary parameters and outflow properties dictate the kilonova component and the afterglow emission.
- Using state-of-the-art models we aim to identify the kilonova component and explore the outflow parameter space.
- The best fit templates would be used to constrain the binary parameters and EOS.

Thanks

Additional Information

Opacity distribution

