Multiwavelength Follow-up Observations of Astrophysical Neutrino Events

RileyAnne Sharpe¹, Marcos Santander¹, Atreya Acharyya¹, Sara Buson² ¹University of Alabama, ²University of Wurzburg

The Transient Universe 2023
June 2023

IceCube and Astrophysical Neutrinos

- IceCube Neutrino Observatory has detected a high-energy diffuse neutrino flux.
 - No sources have been identified at the 5σ level.
 - Active galactic nuclei (AGN) are promising candidate sources.
- IceCube real time alert system allows for multiwavelength follow-ups.
 - Gold events have ~50% average likelihood of being astrophysical in origin.

Event display for the neutrino event IC170922A

<u>Aartsen M. G., et al., 2018, Science, 361, eaat1378</u>

Counterparts to Astrophysical Neutrinos

- The blazar TXS 0506+056 was found to be in the 50% containment region of the neutrino alert IC170922A.
- Archival analysis found evidence of a "neutrino flare" at the 3.5σ level at the location of this source in 2014-2015.
- Connections between astrophysical neutrinos and high energy photons could help explain acceleration mechanisms in AGN jets.

Fermi-LAT observation of TXS 0506+056 showing its location within the 50% containment region of IC170922A

Aartsen M. G., et al., 2018, Science, 361, eaat1378

Connecting Cosmic Rays and Neutrinos from AGN

IceCube/NASA

$$p + p/\gamma \to X + \pi^0 \to \gamma\gamma$$

$$\to X + \pi^+ \to \mu^+ + \nu_{\mu}$$

$$\mu^+ \to e^+ + \nu_e + \bar{\nu}_{\mu}$$

- Lepto-hadronic models
 - Cosmic rays in jet interact with radiation fields to create neutral and charged pions.
 - Gamma rays emitted through neutral pion decay.
 - Neutrinos emitted through charged pion decay.
- AGN as point sources of neutrinos would be evidence supporting lepto-hadronic models.
- Cascading produced by the interaction of gamma-rays and photon fields in the AGN can lead to the production of X-rays and MeV gamma-rays.

Swift Follow-up Campaigns

- Follow-up program targeting sources similar to TXS 0506+056:
 - Began in Swift Guest Investigator Cycle 16, and continued in Cycles 17, 18, and 19 (through March 2024).
 - Prompt observations of Fermi-detected sources located within the error region of an IceCube Gold alert.
 - Collect 4 ks as quickly as possible after neutrino detection.
 - 4 ks more ~48 hrs later to look for fast variability.
 - 4ks more ~few weeks later to look for longer timescale variability.

Neil Gehrels Swift Observatory

NASA E/PO, Sonoma State University/Aurore Simonnet

Swift Follow-up Observations

Source	Neutrino Event	Signalness	Swift Response Time [hr]
1WHSP J104516.2+275133	IC190704A	48.6%	99.0
PKS 1502+106	IC190730A	67.2%	1.1
4FGL J1702.2+2642	IC200530A	59.2%	8.5
4FGL J1659.0+2627	IC200530A	59.2%	2.3
4FGL J0658.6+0636	IC201114A	56.2%	17.2
PKS 0735+17	IC211208A	50.2%	36.9
NVSS J175236-101145	IC220425A	49.7%	110.0
Fermi J1458.0+4119	IC220624A	60.9%	3.9
IceCube-220629A	IC220629A	30.1%	18.9
TXS 2320+343	IC221223A	79.5%	24.3

- Signalness provided by IceCube gives a measure of how likely it is that each neutrino is of astrophysical origin.
- Swift ToO observations typically performed within hours of neutrino detection.

IC170922A and TXS 0506+056

- Enhanced gamma-ray and X-ray flux around detection of IC170922A.
- No evidence of enhanced flux during the neutrino flare in 2014-2015.
- Increased multiwavelength monitoring of this source.
- Models for emission
 mechanisms can be found in
 Keivani et al. (2018),
 Petropoulou et al. (2020).

IC170922A and TXS 0506+056

- Enhanced gamma-ray and X-ray flux around detection of IC170922A.
- No evidence of enhanced flux during the neutrino flare in 2014-2015.
- Increased multiwavelength monitoring of this source.
- Models for emission
 mechanisms can be found in
 Keivani et al. (2018),
 Petropoulou et al. (2020).

- High energy neutrino detected during a period of decreasing gamma-ray and X-ray flux between two potential flares.
- Models for emission mechanisms can be found in Oikonomou et al. 2021.

- High energy neutrino detected during a period of decreasing gamma-ray and X-ray flux between two potential flares.
- Models for emission mechanisms can be found in Oikonomou et al. 2021.

- Source located outside uncertainty region for location of IceCube neutrino.
- High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux.

- Source located outside uncertainty region for location of IceCube neutrino.
- High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux.

- Source located outside uncertainty region for location of IceCube neutrino.
- High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux.

- Source located outside uncertainty region for location of IceCube neutrino.
- High energy neutrino detected preceding a period of enhanced gamma ray and X-ray flux.

Conclusions and outlook

- Continue Swift follow-up observations of Gold neutrino detections.
- Determine when/if sources are flaring at the time of the neutrino detection.
- Characterize the spectral shape of neutrino counterparts and determine if spectral index changes.
- Future work includes determining chance correlation for flaring X-ray sources with neutrino events.

Martin Wolf IceCube/NSF