

Study of accretion and ejection processes in variable back hole systems with SVOM

> By Antoine Foisseau, 1st year PhD student at APC. Supervised by Andrea Goldwurm and Alexis Coleiro.

X-ray missions : INTEGRAL, Einstein Probes, SVOM

Einstein Probes : soft X-ray survey and soft X-ray accurate follow up

INTEGRAL : hard X-ray / Gamma ray survey

SVOM : hard X-ray/ Gamma ray survey, soft X-ray and visible follow up

AGNs : unified model

Active Galactic Nuclei : Galaxy where the emission is dominated by the nuclei with a non thermal emission.

Structure :

- **SMBH** at the center with accretion disk
- Dusty torus around
- 2 regions BLR and NLR → dust ionised by the photons of the disk and emitting in visible and UV
- Jets in the direction of the rotation axis of the galaxy
- ➔ AGNs are divided in subclasses related to the direction of the jet with the line of sight

Focus on blazars potentially related to neutrinos

Preparing the General Program observations

- Set up a list of source (list of blazars)
- Selection criteria :
- Check if the source is in the B1 law (attitude law) \rightarrow pointing direction of the instruments
- Estimate the exposure time needed with MXT and ECLAIRs
- Check if the source will be enough time in ECLAIRs' f.o.v to be observed

Selection and analysis

1 – Finding blazars to study :

• Crossmatch between IceCube alerts catalog and RFC or 5BZCAT (Plavin et al. 2020 and Buson et al. 2022)

• OR references mentioning potential associations between blazars and neutrinos

2 – Check for B1 law

- 3 Fit of the SED with a **powerlaw** model
- 4 Estimation of *t_{expo}* for MXT and ECLAIRs
- Simulate Source and CXB count rates at SNR = 10
- ➔ XSPEC simulations

Mapping the blazars' sample

			_	+30°	+50°	4 +++++	+7(##	+ + + + + + + +			+++++++++++++++++++++++++++++++++++++++	++	+70°	+ bla B1 SC Ob	o-X1 servable	e with E	CLAIRs +30	o
Total number of blazars	404		+10°	,	+ /+						+			+		+++++++++++++++++++++++++++++++++++++++		+ + +	+	+			+10°
Blazars (neutrinos) located in B1 law (± 10°)	15	2.6 Ms = 30 d MXT for SNR =10	-10°		200	220 2	40	260	280	300	320	340	0 +	20	40	60	80	100		20 1	40	160	180 -10°
Blazars with enough exposure time to be detected with ECLAIRs without repointing (stacking)	4	1.5 Ms = 17.5 d For SNR = 10		-30°	+ -50°	++++	-70	+++++++++++++++++++++++++++++++++++++++				++		+++++	+++++++++++++++++++++++++++++++++++++++			+ ++++ -70°	t t t	* ++ ++ * ****	+ 50°	-30°	

PKS 2149-306 Simulated for t_{exp} = 100 ks

XSPEC simulated spectrum

Simulate the MXT spectrum via XSPEC (using the spectral parameters of the « real » SED)

Fit the simulated spectrum with a powerlaw model

$$E^{2} \frac{dN}{dE} = K \times E^{-\Gamma+2} \times e^{-0.286733 \frac{n_{H}}{E^{3}}}$$

Estimate t_{expo} : $\delta_{\Gamma} < 10\%$ and $\delta_{K} < 10\%$

With CXB $\Gamma = 1.32 \pm 0.06 \Rightarrow 4.29 \%$ $K = 9.561e-04\pm4.0e-05 \text{ ph/keV/cm}^2/\text{s} \Rightarrow 4.14 \%$

INTEGRAL data analysis of interesting AGN

WHY ? \rightarrow related to high energy neutrinos

NGC 1068 : association at 4.2 σ level \rightarrow IceCube Collaboration et al, Science 2022

TXS 0506+056 : association at 3σ level in 2017 \rightarrow Keivani et al, Science 2018 / IceCube Collaboration et al, APJ 2018

Composite image of NGC 1068 : X-ray (Chandra) + optical (HST) + radio (VLA).

Conclusion

Conclusion : constrain emission models of blazar

Keivani et al. Science. 2018

Conclusion : Multi-wavelength data from SVOM / INTEGRAL / EP / FERMI

12

Count rates simulations for source (S) and CXB (B)

• MXT count rates for S and B :

$$S = \int ARF \times K \left(\frac{E}{E_0}\right)^{-\Gamma} \times e^{-0.286733} \frac{n_H}{E^3} dE$$
$$B = \int ARF \times 3.67 \times 10^{-3} \times PSF \times \left(\frac{E}{E_0}\right)^{-1.47} \times e^{-0.286733} \frac{n_H}{E^3} dE$$

• ECLAIRs count rates for S and B :

$$S = \int ARF \times K \left(\frac{E}{E_0}\right)^{-1} \times e^{-0.286733} \frac{n_H}{E^3} dE$$
$$B = \int ARF \times PSF \times \frac{0.109}{\left(\frac{E}{E_B}\right)^{1.4} + \left(\frac{E}{E_B}\right)^{2.88}} \times e^{-0.286733} \frac{n_H}{E^3} dE$$

K, Γ : spectral parameter determined by the fit of the SED

 $E_{B} = 0.29 \text{ keV}$

Note : We use Moretti et al. 2009 for the CXB model.

Estimation of t_{exp}

 t_{exp} MXT :

$$t_{exp} = \left(\frac{SNR}{S}\sqrt{S+B}\right)^2$$

texp ECLAIRs :

$$t_{exp} = \left(\frac{SNR}{S}\sqrt{\frac{S}{0.4} + B}\right)^2$$

SNR = Signal to noise ratio = 10

S, B = count rates for source and background (CXB) Note : We followed Skinner et al. 2008 to compute t_{exp} for ECLAIRs

XSPEC simulations

$T_{PKS \ 2149-306} \simeq 25,08 \pm 0,24 \ ks$

Energy(keV)