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Reverberation

Measurement of Spin
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Super-Eddington Accretion

Different geometry and outflow




Super-Eddington Accretion

X-ray reverberation

3d) Corona height dependece
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Set-up

Corona-wind-funnel system

Assumption: Parameters:

(1) Cone geometry (1) Corona Height

(2) Radial wind (ignore rotation for now) (2) Funnel open angle

(3) Lamp post corona (3) Wind velocity (terminal velocity
&@/7 & 1 parameter for acceleration)
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Method

Monte-Carlo simulation

&g 1. Generate photons with energy following a power-law distribution, emitted
isotropically in the frame of corona

Funnel
2. Forward ray-tracing from corona to funnel (or escape)

3. After the photon crosses the funnel, use Monte-Carlo method to decide if
an interaction happens within the step or not.

4. If an interaction happens, determine whether an elastic scattering or
fluorescence process (generating a Fe Ka line) happens

5. The reflected photon is emitted isotropically in the frame of the funnel gas
element

6. Go back to step 2, and trace 2nd and more reflections.

/. Eventually, we collect the photons escaped
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Result

Dependence on terminal velocity
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As the terminal velocity increases,
the following will also increase:
1. Blueshift of the primary peak
— —Doppler blueshift
2. Line width of the primary peak
— —Large velocity span, larger energy shift span
3. Separation between the primary and secondary peak
— —the winds are moving away from each other
4. The ratio flux (1 ref)/(2 ref)
— —beaming effect



Result

Dependence on acceleration radius
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—-— Fe+Scatter
As the R_acc increase, the following will decrease:
0.8 1 0.8 1
1. Blueshift of the primary peak
06 06 — —slower acceleration
2. Separation between the primary and secondary peak
0.4 0.41 — —the winds are moving away from each other
3. The ratio flux (1 ref)/(2 ref)
0.2- 0.2- _
— —beaming effect
00 00 No apparent change on the line width of the primary peak
06 0.8 10 1.2 1.4 06 08 10 1.2 1.4 — —decided by the terminal velocity



Result

Dependence on corona height

(a) Hip = 10 R, (b) Hip = 20 R,
107 oot e 101 As the terminal velocity increase, the following will also increase:
. . 1. Blueshift of the primary peak

— —Doppler blueshift
0.6 0.6 2. Separation between the primary and secondary peak

— —the winds are moving away from each other
0'4_ 0'4_ 3. The ratio flux (1 ref)/(2 ref)
0.2 0.2 — —beaming effect

But the line width decreases
T . . . . T . . . . — —less illumination on the lower part which has a strong redshift
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vF, [Arbitrary units]

Result

Dependence on open angle

(@) Bhair = 1/6 (b) Ohair = 11/5 (C) Ohair = /4
1.0 - 1.04 Scatter+Fe 1.0 . _ _
~— FetScatter As the open angle increase, the following will
0.8 0.8 also increase:
1. Separation between the primary and
0.6 0.6
secondary peak
0.4 0.4 — —the winds are moving away from each
other
0.2 0.2
2. The ratio flux (1 ref)/(2 ref)
0.0 0.0 — —more likely to escape after 1 reflection
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Summary and discussion

 We use GR ray-tracing and Monte-Carlo method to generate a series of Fe Ka
spectra from a super-Eddington system

* [he spectral behavior is generally consistent with previous work
 Double-peak spectra can also appear in super-Eddington system
* Application

* (1) probing the corona, wind and geometry

* (2) time evolution



Thank you!



Future plan
Apply it to X-ray reflection spectra
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