Searching for Tidal Disruption Events with VAST

Hannah Dykaar Maria Drout Bryan Gaensler

Tidal Disruption Event

When the tidal forces between a supermassive black hole and a star exceed the star's self gravity

Radio TDE Population

- Handful of TDEs with radio observations
- Only a few discovered in radio regime

Radio-discovered population

- Unbiased rate estimate of radio-bright TDEs
- Unique perspective on host galaxies

Variables and Slow Transients (VAST)

Upcoming ASKAP survey

 Observe ~10 000 square degrees of sky every day for ~2 years

Pilot version already complete

- 5,131 square degrees
- Central frequency of 888 MHz
- Typical image rms of 0.24 mJy/beam-1.
- 21 epochs over ~2 years

† What would a TDE look like in the VAST Pilot? +

TDE Simulation

Simulate TDEs over range of

- Distance
- Explosion time
- Explosion energies
- Surrounding densities
- Location in sky
- Jetted or not

Project onto the VAST Pilot cadence and sensitivity.

TDE Simulation

TDE Simulation Comparison with AGN

TDE Simulation Comparison with AGN

Possible light curve morphologies

- Flare from a quiescent galaxy
- Repeated variability
- Dominant flare with underlying radio emission

Possible light curve morphologies

- Flare from a quiescent galaxy
- Repeated variability
- Dominant flare with underlying radio emission

Possible light curve morphologies

- Flare from a quiescent galaxy
- Repeated variability
- Dominant flare with underlying radio emission

Peak Flux Ratio:

Highest peak
Second highest peak

Candidate Selection

Selection Criteria

- Radio Variability
 - Varies by a factor of 2
 - T-statistic above the 95% confidence interval
- Lightcurve morphology
 - 1 significant flare

Selection Criteria

Coincident with Galaxy Nucleus

- Cross check with SDSS,
 Pan-STARRS, DES, Skymapper
- Require VAST position within 2 combined sigma of optical centroid

Properties of Candidates

Radio Light Curves

- Want to compare candidates to model TDEs
 - First fit for any underlying quiescent flux
 - Extract estimates for peak flux and time-to-peak
 - Compare to models of various energies and densities

Radio Light Curves

Calculate rise time and peak luminosity of sources in sample

Radio Light Curves

Host Galaxy - Star Formation

Can calculate star formation of host galaxies using optical magnitudes and quiescent radio flux

Host Galaxy

Infrared colours from WISE help to classify host galaxy

Volumetric Rates

- Using our final sample size can compare to percentages we expect to detect from simulation to recover physical rates
- If every source in our sample is a TDE: ~4 Gpc⁻³ yr⁻¹
 - Theoretical estimate for off-axis jetted TDEs: 10 Gpc⁻³ yr⁻¹
 - Observed estimate: 1 Gpc⁻³ yr⁻¹

Summary

- The VAST Pilot from ASKAP provides a new opportunity for a radio-identified population of TDEs
- We generated a simulated population of TDEs to know what to look for and how many to expect
- We chose selection criteria based on identifying as many TDEs as possible while minimizing contaminants from AGN