The IceCube Realtime

Program Giacomo Sommani Cargèse, 2023 30/05 - 09/06

> RUHR UNIVERSITÄT BOCHUM

RUB ICECUBE

Summary

• Introduction (what is IceCube? What and how does it detect?)

• The Realtime Alerts

• IC170922A coincidence with TXS 0506+056

The IceCube Neutrino Observatory

 In 2013, the IceCube collaboration announced the detection of a diffuse astrophysical neutrino flux.

 Origin of these neutrinos is still unknown.

 Realtime alerts to identify possible sources. The angular reconstruction is extremely important.

Realtime Alerts, current status

Neutrinos with a high probability of being astrophysical.

- First rough estimation:
 - It uses SplineMPE, <u>fast and</u> <u>robust</u>).
- Updated alert:
 - It uses Millipede + likelihood scan, (slow and very systematics-dependent).

Ref: C. Lagunas Gualda et al., *arXiv:2107.08670* (2021)

Presented at the IceCube spring Collaboration meeting (2022)

The data consists of hits registered by the Digital Optical Modules (DOMs)
SplineMPE Millipede

It reconstructs the muon track assuming a continuous emission. **Fast and uses few data.**

Parameters: direction and vertex.

First update of the realtime alerts. No likelihood scan.

It reconstructs the muon track assuming a stochastic emission. **Slow and uses a lot of data.**

Parameters: direction, vertex, and energy.

Second update of the realtime alerts. It uses the likelihood scan.

The likelihood scan (or likelihood landscape)

Millipede already used it to reconstruct the direction.

I developed it for SplineMPE too.

Goal: to compare SplineMPE with Millipede.

IC170922A 290 TeV neutrino

IceCube Collaboration et al. *Science* 361 (2018), eaat1378.

Neutrino coincident with a flaring blazar (TXS 0506+056).

Switching from Millipede to SplineMPE, how would the contours change?

IC170922A reconstructed with SplineMPE

- Combined SplineMPE with the likelihood scan;
- SplineMPE much more precise than Millipede;
- TXS still in central position.

Analysis of IceCube neutrino data with focus on the study of the angular uncertainty | 28/10/2022 Giacomo Sommani

NLLH

Conclusions

• The realtime alerts select neutrinos with a high probability of being astrophysical.

- IceCube sends two updated for each alert, using two different algorithms:
 - First update: SplineMPE **without** likelihood scan;
 - Second update: Millipede with likelihood scan

• SplineMPE with the likelihood scan is faster and more precise.

Thank you for listening!

Backup Slides

Improvements with the likelihood scan

IC191001A's resimulations

Analysis of IceCube neutrino data with focus on the study of the angular uncertainty | 28/10/2022 Giacomo Sommani

(2022)

The Problem:

Millipede results depend strongly on systematic uncertainties (one of the most important is the ice model)

Possible Solution:

An alternative reconstruction algorithm: SplineMPE, its results depend less on systematics because it uses fewer data.

My work:

- Develop a unique configuration of SplineMPE for the likelihood scans.
- Study SplineMPE dependence on systematic uncertainties.

Muon's light emissions

- Continuous light emission:
 - Cherenkov effect induced by the Muon.

Cascades

• Stochastic light emission:

- Stochastic energy losses along the muon track produce secondary cascades.
- The relativistic particles in the secondary cascades induce Cherenkov effect.

Analysis of IceCube neutrino data with focus on the study of the angular uncertainty | 28/10/2022 Giacomo Sommani

Muon

The current solution (IC160427A resimulations)

One event, resimulated (simulating events *similar* to the original one) to investigate **the log-likelihood-ratio distribution** $p(\lambda)$.

250 simulated events similar to IC160427A

The resulting levels are currently used in realtime alerts.

My results using SplineMPE's likelihood scans (on Golden Muons)

- Levels much smaller than with Millipede.
- Not so different from one category to another.
- Not so far from Wilks' theorem.

This is the case for most of the Golden Muons categories.

High-Energy Astrophysical Neutrinos

AGNs, TDEs, SLSNs, the galactic plane, are just some examples...

The Muon Track light emission

0

0

0

• Continuous emission:

0

• Muon's Cherenkov effect.

- Stochastic emission:
 - Bremsstrahlung;
 - Pair production;

The Signatures

Neutral current / Charged current v_e

Charged current ν_{μ}

Charged current v_{τ}

N. lovine, Master thesis, Université de Mons, (2017)

- The detected light is emitted via Cherenkov effect by relativistic particles
- Track signatures are the most promising to reconstruct the direction