Software Development

How to bring your (python) codes to the next level
Nicolas Dagoneau - nicolas.dagoneau@cea.fr

Transient Universe 2023 - Cargese


mailto:nicolas.dagoneau@cea.fr

Todo before the hands-on

e Create an account on GitHub
e Ensure you can work with python (hands-on are tested with 3.10)

e |nstall required packages

| recommend working in a conda environment that is isolated from yours.


https://github.com/login
https://github.com/dagnic/cargese-TS2023-dev/blob/main/requirements.txt

Introduction

About me

e PhD on Svom (2017-2020): image processing for the ECLAIRs onboard trigger,
study GRBs detection (ultra-long GRBs).
e Since 2021: working at CEA, computer division, on Svom and Euclid (science &

development).

Goal of this presentation

e Show you how to turn bunch of python files into package, ready to be shared,
tested and documented.

e This is not about data analysis.

e Based on my own experience (hence biased).



Why?

During my PhD, the code | wrote was mainly python files (modules) + some jupyter
notebooks (always changing) in different directories: not always backed-up, not

documented, very few constrains on code quality, few or no test at all — difficult to
maintain and to share (ie. not FAIR).



Tools

e Use an integrated development environment: pycharm, VSCode...

e Define package: setuptools

e Implement tests (in parallel to the development): pytest, using assert
e Code coverage by the tests: coverage

e Write the documentation: sphinx/ReadTheDocs

e Autoformat code: black

e Analyse code: pylint, ruff, flake8...

e Push to git: github, gitlab


https://www.jetbrains.com/fr-fr/pycharm/
https://code.visualstudio.com/
https://setuptools.pypa.io/
https://docs.pytest.org/
https://coverage.readthedocs.io/en/latest/
https://www.sphinx-doc.org/
https://docs.readthedocs.io/
https://black.readthedocs.io/en/stable/
https://pylint.readthedocs.io/en/latest/
https://beta.ruff.rs/docs/
https://flake8.pycqa.org/en/latest/
https://github.com/
https://gitlab.com/

Package structure

Basic package structure.

— pyproject.toml

— README .md

— requirements.txt

— doc

— sirc

L cargese

— gcn_requester.py
— _init_ .py

— tools.py

— tests

— test _gcn _requester.py
— test _tools.py




Project configuration in pyproject.toml

name = "cargese"
version = "0.0.1"
authors = [
{name = "Nicolas Dagoneau", email = "nicolas.dagoneau@cea.fr"},
|
description = "Tutorial package for Transient Universe 2023 school in Cargese”

readme = "README.md"
dependencies = |

"requests”,
"pandas”,
"importlib-metadata; python version<"3.8"',
]
gcn-requester = "cargese.scripts.cargese gcn_requester:main”

omit = ["*/scripts/*"]



Write tests

Tests should be simple, short, easy to understand and allow to cover all cases in the
code (if, else, for, raised exceptions...). They use assert .

Example:

def test timestamp to datetime():
utc_date = tools.timestamp_to datetime(0)
assert utc_date == datetime.datetime(1970, 1, 1)



Install, test, build documentation

black src/

ruff check src/ # pylint src/

pip install .

pytest tests/

coverage run --source src/ -m pytest
coverage report

cd doc && make html # or other format



All together with make

Makefile:: make install , make test ...

.PHONY: all

@pip install .
@pytest tests
@make -C doc/ html

@coverage run --source src/cargese -m pytest
@coverage report

10



A few words about git

Manage code versions, back-up, improve team development: git-guide, git-branching

git add new_class.py tests/test new class.py
git commit -m "Implement new class”
git push

11


https://rogerdudler.github.io/git-guide/
https://learngitbranching.js.org/?locale=en_US

Continuous integration: push, build, test, deploy

You can build wathever you want (eg. building pdf for PhD manuscript).

Running in a distant repository

Jobs (install, checks, tests, ...) are described in yaml files.

e On github, it works with actions, stored in .github/workflows .

e On gitlab, it works with " .gitlab-ci.yml

12



Lets practice

e Fork github.com/dagnic/cargese-TS2023-dev
e (Create conda env: conda create -n cargese python=3.10 )

e |nstall requirements: pip install -r requirements.txt

Exercise

Implement a new method/class, install, add tests and run them, generate
documentation, (use make ) push and check that jobs succeed!

13


https://github.com/dagnic/cargese-TS2023-dev

Few configurations

e Activate github pages on gh-pages branch
(https://github.com/<user>/<project>/settings/pages). Documentation is here:
https://<user>.github.io/<project>/

e Add your repository to coveralls.io

14


https://github.com/
https://coveralls.io/

To go further away

For other languages (eg. C++), you could create bindings to access C++
classes/methods via python: pybind11, swig.

Create your own dashboard to plot results using plotly/dash

Licence for software distribution: that's something you have to consider if you want
to share your package within the public domain.

Publish package to PyPI: twine

Things can alway be improved: find a balance
Code design and factoring is also an important job
Version number update: bump2version

Changelog

15


https://pybind11.readthedocs.io/en/stable/
https://www.swig.org/
https://dash.plotly.com/
https://twine.readthedocs.io/en/latest/
https://github.com/c4urself/bump2version/

... "Be kinder to your future self" (ruff)

16



