
Software Development
How to bring your (python) codes to the next level

Nicolas Dagoneau - nicolas.dagoneau@cea.fr

Transient Universe 2023 - Cargèse

1

mailto:nicolas.dagoneau@cea.fr

Todo before the hands-on
Create an account on GitHub
Ensure you can work with python (hands-on are tested with 3.10)

Install required packages

I recommend working in a conda environment that is isolated from yours.

2

https://github.com/login
https://github.com/dagnic/cargese-TS2023-dev/blob/main/requirements.txt

Introduction

About me

PhD on Svom (2017-2020): image processing for the ECLAIRs onboard trigger,
study GRBs detection (ultra-long GRBs).
Since 2021: working at CEA, computer division, on Svom and Euclid (science &
development).

Goal of this presentation

Show you how to turn bunch of python files into package, ready to be shared,
tested and documented.

This is not about data analysis.

Based on my own experience (hence biased). 3

Why?
During my PhD, the code I wrote was mainly python files (modules) + some jupyter
notebooks (always changing) in different directories: not always backed-up, not
documented, very few constrains on code quality, few or no test at all → difficult to
maintain and to share (ie. not FAIR).

4

Tools
Use an integrated development environment: pycharm, VSCode...

Define package: setuptools

Implement tests (in parallel to the development): pytest, using assert

Code coverage by the tests: coverage

Write the documentation: sphinx/ReadTheDocs

Autoformat code: black
Analyse code: pylint, ruff, flake8...

Push to git: github, gitlab

5

https://www.jetbrains.com/fr-fr/pycharm/
https://code.visualstudio.com/
https://setuptools.pypa.io/
https://docs.pytest.org/
https://coverage.readthedocs.io/en/latest/
https://www.sphinx-doc.org/
https://docs.readthedocs.io/
https://black.readthedocs.io/en/stable/
https://pylint.readthedocs.io/en/latest/
https://beta.ruff.rs/docs/
https://flake8.pycqa.org/en/latest/
https://github.com/
https://gitlab.com/

Package structure
Basic package structure.

├── pyproject.toml
├── README.md
├── requirements.txt
├── doc
├── src
│ └── cargese
│ ├── gcn_requester.py
│ ├── __init__.py
│ └── tools.py
├── tests
│ ├── test_gcn_requester.py
│ └── test_tools.py

6

Project configuration in pyproject.toml
[project]
name = "cargese"
version = "0.0.1"
authors = [
 {name = "Nicolas Dagoneau", email = "nicolas.dagoneau@cea.fr"},
]
description = "Tutorial package for Transient Universe 2023 school in Cargese"
readme = "README.md"
dependencies = [
 "requests",
 "pandas",
 'importlib-metadata; python_version<"3.8"',
]

[project.scripts]
gcn-requester = "cargese.scripts.cargese_gcn_requester:main"

[tool.coverage.run]
omit = ["*/scripts/*"]

7

Write tests
Tests should be simple, short, easy to understand and allow to cover all cases in the
code (if, else, for, raised exceptions...). They use assert .

Example:

def test_timestamp_to_datetime():
 utc_date = tools.timestamp_to_datetime(0)
 assert utc_date == datetime.datetime(1970, 1, 1)

8

Install, test, build documentation
black src/
ruff check src/ # pylint src/
pip install .
pytest tests/
coverage run --source src/ -m pytest
coverage report
cd doc && make html # or other format

9

All together with make
Makefile:: make install , make test ...

.PHONY: all
all: install test sphinx coverage

install:
 @pip install .

test:
 @pytest tests

sphinx:
 @make -C doc/ html

coverage:
 @coverage run --source src/cargese -m pytest
 @coverage report

10

A few words about git
Manage code versions, back-up, improve team development: git-guide, git-branching

git add new_class.py tests/test_new_class.py
git commit -m "Implement new class"
git push

11

https://rogerdudler.github.io/git-guide/
https://learngitbranching.js.org/?locale=en_US

Continuous integration: push, build, test, deploy
You can build wathever you want (eg. building pdf for PhD manuscript).

Running in a distant repository

Jobs (install, checks, tests, ...) are described in yaml files.

On github, it works with actions, stored in .github/workflows .

On gitlab, it works with .gitlab-ci.yml

12

Lets practice
Fork github.com/dagnic/cargese-TS2023-dev

(Create conda env: conda create -n cargese python=3.10)

Install requirements: pip install -r requirements.txt

Exercise

Implement a new method/class, install, add tests and run them, generate
documentation, (use make) push and check that jobs succeed!

13

https://github.com/dagnic/cargese-TS2023-dev

Few configurations
Activate github pages on gh-pages branch
(https://github.com/<user>/<project>/settings/pages). Documentation is here:
https://<user>.github.io/<project>/
Add your repository to coveralls.io

14

https://github.com/
https://coveralls.io/

To go further away
For other languages (eg. C++), you could create bindings to access C++
classes/methods via python: pybind11, swig.
Create your own dashboard to plot results using plotly/dash

Licence for software distribution: that's something you have to consider if you want
to share your package within the public domain.
Publish package to PyPI: twine

Things can alway be improved: find a balance

Code design and factoring is also an important job

Version number update: bump2version
Changelog

15

https://pybind11.readthedocs.io/en/stable/
https://www.swig.org/
https://dash.plotly.com/
https://twine.readthedocs.io/en/latest/
https://github.com/c4urself/bump2version/

... "Be kinder to your future self" (ruff)

16

