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Compact binaries: isolated formation channel

Mapelli, arXiv:2105.12455 



Stellar winds

Mapelli, arXiv:2106.00699 

·m ∝ Zα

α = 0.5 − 1

Γe =
κeL

4πcGm

α =
0.85 if Γe < 2/3
2.45 − 2.4Γe if 2/3 ≤ Γe ≤ 1
0.05 if Γe ≥ 1{



Collapse to a neutron star

Foglizzo et al., arXiv:1501.01334 



The fate of massive stars

ZAMS mass (solar masses)



Pejcha & Thompson (2015)

The fate of massive stars



Collapse to a compact object

[Spera+2022]

Pair-instability supernova (PISN): 

electron-positron pairs remove pressure from the star -> contraction -> 
runaway oxygen/silicon burning -> disruption of the star



Compact binaries: isolated formation channel

Mapelli, arXiv:2105.12455 



Common envelope

α − λ formalism: Eenv ≃ −
1
λ

Gm1menv,1

R1

ΔEorb,un ≃ − α
Gmc,1mBH
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af

−
1
ai )

Mapelli, arXiv:2106.00699 

Envelope binding energy

Fraction of orbital energy used to 
unbind the envelope



[Samsing+2020]

Compact binaries: isolated formation channel



Compact binaries: isolated formation channel

[Spera+2022]
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Detection of gravitational waves: GW150914

Abbott et al. (LVC) 2016



Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053;

Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045



Black hole populations: mass distribution

[Abbott et al. 2023, PRX, 13, 011048]



Black hole populations: merger rate evolution

RBBH(z = 0.2) = 17.3 − 45 Gpc−3yr−1

[Abbott et al. 2023, PRX, 13, 011048]



Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053;

Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045



GW190814

Black holes in the lower mass gap

[Abbott et al. 2020, ApJL, 896, 44]

m1 = 23.3+1.1
−1.0 M⊙

m2 = 2.59+0.08
−0.09 M⊙

Heaviest neutron star?


Lightest black hole?



Black holes in the lower mass gap

[de Sá+2023]

Is the mass gap real?

Is it an observational effect?

[Spera+2022]

Implications for supernova 
explosion mechanism?



Abbott et al. 2019, PRX, 9, 031040; Abbott et al. 2021, PRX, 11, 021053;

Abbott et al. 2021, arXiv:2111.03606; Abbott et al. 2021, arXiv:2108.01045



Black holes in the upper mass gap

GW190521

[Abbott et al. 2020, PRL 125, 101102]

m1 = 85+21
−14 M⊙

m2 = 66+17
−18 M⊙

[Abbott et al. 2020, ApJL, 900, 13]

Hierarchical merger?


Black hole formed in the mass gap?



[Saavik Ford+2019: Astro2020 White Paper]

BBH mergers in AGN disks?
AGN + gaseous disk + distribution of BHs


Some BHs get trapped in the disk


Torques from gas: BHs migrate within the disk and merge


BH can grow by gas accretion —> IMBH 

Optical counterpart to 
GW190521: 
J124942.3+344929 ? 
[Graham+2020]



Irina Dvorkin GWADW 2023

The link between stellar-mass and massive black holes?

[Volonteri+2022]
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Massive black hole binaries

Evolution of massive BH binaries: 

Seed BHs grow through accretion in galactic centers


Two galaxies that host BHs merge (10-100 kpc)


Dynamical friction of BHs with surrounding gas —> bound BH binary (kpc)


Orbit decay through interactions with surrounding gas and stars (pc)


Emission of GW —> merger (milli-pc)

MBH ∼ 105 − 109M⊙

[Khan et al. (2016)]



A variety of GW sources with LISA
Astrophysics with LISA [2203.06016] 

Cosmology with LISA [2204.05434]
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Extreme mass-ratio inspirals

Stellar-mass black holes orbiting massive black holes

Credit: N. Franchini

Population models: massive black hole formation 

+ capture rates of stellar-mass black holes

Waveform models: long-lived source, need 

extreme accuracy



Core-collapse supernovae

LGW ∼
G
c5

···Q2 ∼
c5

G ( GM
Rc2 )

2

( v
c )

6

Need compact sources, relativistic motion

[Radice+2019]



Varying ZAMS masses

High ZAMS mass,  
Rotation

SASI, Rotation

[Finkel+2022]
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Rotating neutron stars

Sieniawska & Bejger (2019)

h ≃
4π2G

c4

I3 f 2
GWϵ
r

ϵ =
I1 − I2

I3

Triaxial star

Many mechanisms lead to continuous waves from neutron stars: 


oscillations, deformability due to magnetic stresses, free precession…



Incoherent superposition of deterministic signals

1 BNS 10 BNS

50 BNS 500 BNS



Combination of stochastic signals
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Signal is buried in noise!

In the inspiral phase: ΩGW( f ) ∝
dE

d ln f
∝ f 2/3
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Stochastic background from compact binaries

[LVK 2021]



Varying ZAMS masses

High ZAMS mass,  
Rotation

SASI, Rotation

[Finkel+2022]



[Finkel+2022]



Rotating neutron stars

Rotating neutron stars with a triaxial shape


In magnetars: strong distortion of the shape (depending on the EOS)



Double white dwarfs
A few millions of double white dwarf systems in the Milky Way


Monochromatic sources in LISA band


Confusion noise dominates instrument noise in the mHz band

[Robson & Cornish 2017]



Stellar-mass black holes 

orbiting massive black holes


Expected to form in dense 

galactic centers


LISA detection rates:

[Bonetti & Sesana 2020]

Extreme mass ratio inspirals
MBH ∼ 105 − 107M⊙

mBH ∼ 10 − 50M⊙

1 − 104 yr−1 [Babak+2017]



Pulsar Timing Arrays

Tentative detection of a correlated signal by NANOGrav, PPTA, EPTA 

Evidence for a common-spectrum process, but not the correlation expected from GW


Consistent with signal from black hole binaries


Consistent with cosmological signals (primordial black holes, cosmic strings…)

h c
(f)

[Izquierdo-Villalba+ 2022]



Gravitational-wave astronomy is fun!


