

X-ray binaries

Victoria [Vici] Grinberg, ESA/ESTEC

ESA UNCLASSIFIED - For ESA Official Use Only

Accretion & ejection processes

- ➤ labs for physics under extreme conditions
- ➤ AGN on fast-forward
- probes for material in their direct environment (esp. stellar winds in high mass stars)

Populations & evolution

- compact object merger progenitors (or not)
- probes for stellar and compact object evolutionary pathways

A heterogeneous set of objects

- ➤ classified by compact object
 - ➤ black hole
 - ➤ neutron star
 - ➤ (white dwarf)
- ➤ classified by companion
 - ► low mass X-ray binary (companion ≤ 1 solar mass)
 - high mass X-ray binary (companion ≥ 8 solar masses)

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

A heterogeneous set of objects

- ➤ classified by compact object
 - ➤ black hole
 - ➤ neutron star
 - ➤ (white dwarf)
- ➤ classified by companion
 - ► low mass X-ray binary (companion ≤ 1 solar mass)
 - high mass X-ray binary (companion ≥ 8 solar masses)

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

LMXBs vs HXMBs

LMXBs vs HXMBs

LMXBs

- older systems, also seen at higher Galactic latitudes
- ➤ neutron stars: low magnetic fields
- catalogues: Avakyan et al. 2023 (XRBCats, astro.uni-tuebingen.de/ ~xrbcat), Liu et al. 2007

Bahramian & Degenaar 2023; pink - BH LMXBs; blue - other LMXBs note that this is NOT the full known sample

LMXBs vs HXMBs

LMXBs

- older systems, also seen at higher Galactic latitudes
- ➤ neutron stars: low magnetic fields
- catalogues: Avakyan et al. 2023 (XRBCats, astro.uni-tuebingen.de/ ~xrbcat), Liu et al. 2007

HMXBs

- young system, in the galactic place, tracing stellar formation regions
- ➤ neutron stars: can have very high magnetic fields (impact onto accretion phenomena!)
- ➤ catalogues: Fortin et al. 2023, Neumann et al. 2023

Bahramian & Degenaar 2023; pink - BH LMXBs; blue - other LMXBs note that this is NOT the full known sample

X-ray binaries: LMXBs

Physical & observational properties mainly linked to binary configuration properties & nature of donor star, less to type of compact object

- ➤ canonical Roche lobe overflow: main sequece or giant companion
 - most sources transients
- ➤ ultra-compact binaries (orbital period < 80 min)
 - ➤ most persistent, some transient
- ➤ symbiotic X-ray binaries (wind-fed)
 - accrete from wind of low-mass late-type supergiant
- ➤ accreting ms X-ray pulsars (AMXPs)
 - ➤ progenitors of millisecond radio pulsars

Bahramian & Degenaar 2023

Esp. interesting: eclipsing sources!

X-ray binaries: LMXBs

The nature of compact object:

- ➤ bursts & pulsations ⇒ neutron star
- ➤ radial velocity & mass estimates ⇒ inclination dependence, but unambiguous identification for black holes if above 3 solar masses
- ➤ disk-jet coupling ⇒ both NS and BH show jets, but BHs are brighter in radio by factor 5-20 at same X-ray luminosity
- ➤ quiescent X-ray properties ⇒ NS have surface giving rise to black body emission in quiescence (note: absence not evidence for BH accretor!)
- ➤ ... and many others

"If it looks like a duck, and quacks like a duck, we have at least to consider the possibility that we have a small aquatic bird of the family anatidae on our hands."

- Douglas Adams

birdbox.se

- spectral (broad band vs. high res)
- ➤ timing / short-term variability
- ➤ spectral-timing
- polarization (low- vs. high energies)
- ➤ multiwavelength approaches
- ➤ theory

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

Aims

- ➤ enable you to (roughly) follow talks & papers on X-ray binaries
- ➤ enable you to find overlaps with your own research field -> enable collaborations
- ➤ give you a feeling for (some) open questions in the field
- ➤ less of "this is the one and only answer" and a lot of "the community does not agree on this"

Aims

- ➤ enable you to (roughly) follow talks & papers on X-ray binaries
- ➤ enable you to find overlaps with your own research field -> enable collaborations
- ➤ give you a feeling for (some) open questions in the field
- ➤ less of "this is the one and only answer" and a lot of "the community does not agree on this"

Biases

- ➤ the speaker & her perspective/knowledge
- ➤ basics vs. newest developments
- ➤ likely lots of unconscious bias

Aims

- ➤ enable you to (roughly) follow talks & papers on X-ray binaries
- ➤ enable you to find overlaps with your own research field -> enable collaborations
- ➤ give you a feeling for (some) open questions in the field
- ➤ less of "this is the one and only answer" and a lot of "the community does not agree on this"

Biases

- ➤ the speaker & her perspective/knowledge
- ➤ basics vs. newest developments
- ➤ likely lots of unconscious bias

Two parts to the lecture:

- ➤ accretion/ejection an observational view using mainly BHs as example
- ➤ X-ray binaries as probes for their environment using winds of companion stars

- spectral (broad band vs. high res)
- ➤ timing / short-term variability
- ➤ spectral-timing
- polarization (low- vs. high energies)
- ➤ multiwavelength approaches
- ➤ theory

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

- spectral (broad band vs. high res)
- ➤ timing / short-term variability
- spectral-timing
- polarization (low- vs. high energies)
- ➤ multiwavelength approaches
- ➤ theory

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

- spectral (broad band vs. high res)
- ➤ timing / short-term variability
- spectral-timing
- polarization (low- vs. high energies)
- ➤ multiwavelength approaches
- ➤ theory

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

Questions?

Accretion/ejection in BH (LM)XBs

Black holes: Variability & Outbursts

- ➤ transient sources
- ➤ persistent souces
- quasi-persistent, e.g. GRS 1915+105 extended outburst

Black holes: Variability & Outbursts

Kalemci et al. 2023

Black holes: Variability & Outbursts

soft state strong disk no radio

Nowak+ 2011 Chandra + Suzaku/XIS + Suzaku/GSO + RXTE/PCA + RXTE/HEXTE + INTEGRAL/ISGRI

soft state strong disk no radio

hard state weak disk radio

Nowak+ 2011

Chandra + Suzaku/XIS + Suzaku/GSO + RXTE/PCA + RXTE/HEXTE + INTEGRAL/ISGRI

Boeck et al. 2011

Boeck et al. 2011

Boeck et al. 2011

Boeck et al. 2011

Power density spectrum

- ➤ a non-complex quantity obtained by multiplying the discrete Fourier transform and its complex conjugated quantity = the PDS is the squared magnitude of the complex Fourier transform
- measure of contribution of different frequencies to total variability
- ➤ XRBs: can typically be modelled with multiple broad & narrow Lorentzians

Papers VG finds especially good intros:

- Pottschmidt 2002 (PhD thesis)
- Nowak et al. 1999

Spectral and timing properties are correlated (both in the same source and across sources)!

Remillard & McClintock 2006

Black holes: X-ray radio correlation

THE ASTROPHYSICAL JOURNAL, 177:L5-L10, 1972 October 1 © 1972. The American Astronomical Society. All rights reserved. Printed in U.S.A.

OBSERVATION OF A CORRELATED X-RAY-RADIO TRANSITION IN CYGNUS X-1

H. TANANBAUM, H. GURSKY, E. KELLOGG, AND R. GIACCONI American Science and Engineering, Cambridge, Massachusetts

AND

C. Jones

Harvard College Observatory, Cambridge, Massachusetts Received 1972 July 24

ABSTRACT

Analysis of 16 months of *Uhuru* data on Cyg X-1 has shown a remarkable transition in the source which occurred during 1971 March and April. The average X-ray intensity in the 2-6-keV energy range decreased by about a factor of 4, the average X-ray intensity in the 10-20-keV band increased by a factor of 2, and a weak radio source suddenly appeared. This simultaneous X-ray and radio behavior provides strong evidence for the identification of the radio source with Cyg X-1. *Uhuru* also monitored Cyg X-1 for 35 consecutive days during 1971 December and 1972 January. The data were analyzed for an effect due to a binary system. Although large-scale fluctuations were present, no periodicity was found.

➤ The very first detection official detection of a state transition

Black holes: X-ray radio correlation

Black holes: X-ray radio correlation

For a given black hole X-ray binary, the radio emission is correlated with X-ray emission:

- ➤ radio detected in hard state
- ➤ (mostly) no radio in soft state
- ➤ radio flares most often during transition
- ➤ hints of simultaneous radio & X-ray flares for several sources such as Cyg X-1 and GRS 1915-105
- detections of extended radio emission in hard state

HID: hardness luminosity diagram

$$hardness = \frac{CR_{hard \, band}}{CR_{soft \, band}}$$

or

hardness =
$$\frac{CR_{\text{hard band}} - CR_{\text{soft band}}}{CR_{\text{soft band}} + CR_{\text{soft band}}}$$

HID: hardness luminosity diagram

$$hardness = \frac{CR_{hard \, band}}{CR_{soft \, band}}$$

or

$$hardness = \frac{CR_{hard \, band} - CR_{soft \, band}}{CR_{soft \, band} + CR_{soft \, band}}$$

Spectral Hardness (spectral slope, soft=steep, hard=flat)

HID: hardness luminosity diagram

$$hardness = \frac{CR_{hard \, band}}{CR_{soft \, band}}$$

or

$$hardness = \frac{CR_{hard \, band} - CR_{soft \, band}}{CR_{soft \, band} + CR_{soft \, band}}$$

JET LINE AREA:

- →2 50% L_{Edd}.
- → High-frequency QPOs (after).
- →Type A & B QPOs (after).
- →See radio ejecta (fast) each "crossing" of jet line.
- →RMS drop ("The Zone") associated with ~0.2 Hz lowest frequency Lorentzian, close to ejecta time.

HIMS:

- → Disk starts near ISCO.
- **→**Transition starts around 2 50% L_{Edd}.
- **→**Type C QPOs.
- **→IR** drops.
- Radio starts going optically thin and variable (new ejecta?).

SOFT STATE:

→ Optically nuclear thin jet radio emission observed initially, but quenched by at least 20-50x by full transition.

Detected radio flux not nuclear?

- → Type C QPOs.
- → Non-thermal power law extending to ~MeV.
- →Thin disk ~0.1-1.0 L_{Edd} at ISCO.
 - + Disk winds

HARD STATE:

- →Disk moves in to ~ few R_g by 10% L_{Edd}.
- →Lorentzian/broad noise components.
- **→**High RMS variability.
 - →Flat spectrum jet up to IR/opt.

 $\Gamma < 2$

- **→**Compact jet
- sometimes resolved.
- →Radio/IR/X-ray correlations.
- **¬**Reflection "bump".

Spectral Hardness (spectral slope, soft=steep, hard=flat)

T. Belloni A. Celotti S. Corbel R. Fender E. Gallo M. Hanke E. Kalemci D. Maitra S. Markoff I. McHardy M. Nowak P.-O. Petrucci K. Pottschmidt J. Wilms

HIMS:

Same as upper branch but:

- → No optically thin radio flare.
- → Radio recovers close to hard state.
- **→** Lower flux level (hysteresis).

QUIESCENCE:

- →Thin disk recessed to > $10^2 R_{c}$
- →BB component seen in UV/Optical.
- →Disk 10-100x more luminous than LX. By ~10⁻⁴ L_{Edd.}
- **No iron lines?**

Q-track shapes:

Kalemci et al. 2023

Outbursts even from the same source show a variety of behaviors so the q-track in not always q-shaped:

- ➤ full outburst (at different maximum intensities!)
- ➤ failed outbursts
- ➤ high only outbursts
- **>** ...

Disk winds

Kalemci+ 2023 after (NASA/CXC/U.Michigan/ J.Miller+ 2006 (left) & Ponti+ 2012 (right)

- ➤ soft state: blue-shifted absorption lines in high inclination sources ⇒ ionized, equatorial outflows
- ➤ mass outflow rate can exceed the mass accretion rate through disks
- ➤ hard state: detection of "cold" winds in optical/IR observations

Low-frequency quasi-periodic oscillations (QPOs)

- ➤ hard state: broad noise components
- ▶ bright hard: variability shifts & often becomes more concentrated ⇒ type C QPOs
 - ➤ likely geometric origin due to inclination dependence (Heil et al. 2015; Motta et al. 2015)
 - ➤ often accompanied by harmonics
- ➤ hard intermediate state: broad band noise drops, but QPOs increases, until suddenly drops
- ➤ replaced by type B QPOs: 1-6 Hz, typically lower amplitude than type C, short-lived (smtimes a few hundred seconds), also inclination dependent
- ➤ soft state: usually no QPOs, handful type A detections (possible subset of Bs?)

Low-frequency quasi-periodic oscillations (QPOs)

- ➤ hard state: broad noise components
- ▶ bright hard: variability shifts & often becomes more concentrated ⇒ type C QPOs
 - ➤ likely geometric origin due to inclination dependence (Heil et al. 2015; Motta et al. 2015)
 - ➤ often accompanied by harmonics
- ➤ hard intermediate state: broad band noise drops, but QPOs increases, until suddenly drops
- ➤ replaced by type B QPOs: 1-6 Hz, typically lower amplitude than type C, short-lived (smtimes a few hundred seconds), also inclination dependent
- ➤ soft state: usually no QPOs, handful type A detections (possible subset of Bs?)

Low/high vs. hard/soft vs. powerlaw/thermal

- ➤ low/high: emission in soft X-rays (oldest state definition, driven by soft X-ray instruments)
- ➤ hard/soft: very empirical description of spectral shape
- ➤ powerlaw/thermal (Remillard & McClintock, 2006): less empirical description of spectral shape
- ➤ intermediate/transitions, anomalous, hard intermedia vs. soft intermediate, etc.
- ➤ different "flavors" of hard state, with possibly different underlying accretion geometries

Low/high vs. hard/soft vs. powerlaw/thermal

- ➤ low/high: emission in soft X-rays (oldest state definition, driven by soft X-ray instruments)
- ➤ hard/soft: very empirical description of spectral shape
- ➤ powerlaw/thermal (Remillard & McClintock, 2006): less empirical description of spectral shape
- ➤ intermediate/transitions, anomalous, hard intermedia vs. soft intermediate, etc.
- ➤ different "flavors" of hard state, with possibly different underlying accretion geometries

Clear defined states vs. a continuum

- ➤ "jumps" in some properties (esp. timing properties)
- ➤ radio ejections
- ➤ smooth changes in spectral shape
- ➤ VG: likely a continuum, with some configurations being especially stable

Low/high vs. hard/soft vs. powerlaw/thermal

- ➤ low/high: emission in soft X-rays (oldest state definition, driven by soft X-ray instruments)
- ➤ hard/soft: very empirical description of spectral shape
- ➤ powerlaw/thermal (Remillard & McClintock, 2006): less empirical description of spectral shape
- ➤ intermediate/transitions, anomalous, hard intermedia vs. soft intermediate, etc.
- ➤ different "flavors" of hard state, with possibly different underlying accretion geometries

Clear defined states vs. a continuum

- "jumps" in some properties (esp. timing properties)
- ➤ radio ejections
- ➤ smooth changes in spectral shape
- ➤ VG: likely a continuum, with some configurations being especially stable

q-track / turtlehead diagram

- ➤ many outburst are "failed", never reading the soft state
- > shape of q-track depends on: source, incl. inclination; instrument used; units used

q-track outliers

Spectral Hardness (spectral slope, soft=steep, hard=flat)

q-track outliers

- Cygnus X-1: not a transient, likely occupies only a narrow range on HID
- ➤ GRS 1915+105: distinct, repeating variability patterns; recently possibly a highly obscured state
- ➤ 1E 1740.7–2942 and GRS 1758–258: most of the time in a hard state, but will sometimes descrease in luminosity to enter soft state
- ➤ 4U 1630–47 : changes the direction of movement through outburst

➤ ...

Spectral Hardness (spectral slope, soft=steep, hard=flat)

Stability of states

Stability of states

Q-tracks provide no information on the overall timing of an outburst:

- ➤ how much time does the source spend in a given state, i.e. how "stable" is a given state?
- ➤ how fast are state transitions?

typically: fast transitions, hard & soft relatively stable; e.g. Böck et al for a state transition within a few hours

Right: the probability of Cygnus X-1 to remain in the same state for hard, intermediate and soft states

Neutron star LXMBs

Van der Klis et al. 2006 (on ArXiv: 2004)

Neutron star LXMBs

Z-sources

High luminosity LMXBs, close to Eddington luminosity

horizontal branch: strong variability, Horizontal branch oscillations (~50 Hz)

normal branch: weaker variability

flaring branch: mostly thermal spectrum

Van der Klis et al. 2006 (on ArXiv: 2004)

Neutron star LXMBs

Van der Klis et al. 2006 (on ArXiv: 2004)

Atoll sources

usually lower luminosity than X-sources

banana state: higher luminosity, low frequency noise dominates variability

island state: lower luminosity, high frequency noise dominates variability

rough correspondence to soft+hard states

source movement: timescales of days-weeks, faster in banana state

Questions?

Questions?

Next: physics & open questions

above 10 keV:

- exponentially cutoff power law
- ➤ cutoff: 50-300 keV for black holes, less for neutron stars
- non-thermal hard tails in some sources

above 10 keV:

- exponentially cutoff power law
- ➤ cutoff: 50-300 keV for black holes, less for neutron stars
- non-thermal hard tails in some sources

below 10 keV:

- sum of power law + disk contribution
- ➤ emission lines (esp. iron line)
- ➤ absorption

corona models:

➤ Comptonization from a hot electron plasma surrounding the disk (Haardt & Maraschi (1991), Dove+ (1998),)

lamppost models:

➤ Comptonization from the base of a jet (Matt+ (1992), Markoff+ (2005),)

... or is the base of the jet the corona?

Coronal geometry is still one of the (THE?) big questions!

Black hole

- ➤ Different spectral models result in similar statistical significance -> pure (continuum) unlikely to solve the problem
- ➤ multiple high end models (comptonization models, JED Petrucci & al., agnjet Markoff & al.)
- ➤ other approaches: multi-method approaches (spectro-timing, polarization), reflection features (iron lines), ...

Relativistically broadened iron lines

Relativistically broadened iron lines

Relativistically broadened iron lines

A. Santangelo

A. Santangelo

A. Santangelo

A. Santangelo

➤ Note: relativistic effect affect all emission, not just lines! -> continuum fitting method for spin measurements

Miller 2007 after Reynolds 1996

Miller 2007 after Reynolds 1996

10²⁶ [erg cm⁻²s⁻ 0 14 1010 10 100 1000 10000 100000 Energy [eV] Wilms after Garcia & Kallman, 2010

ionization parameter $\xi = 4\pi F_{\rm x}/n_e$

Miller 2007 after Reynolds 1996

10²⁶ [erg cm⁻²s⁻ Щ Ш 1014 1010 10 100 1000 10000 100000 Energy [eV] Wilms after Garcia & Kallman, 2010

ionization parameter $\xi = 4\pi F_{\rm x}/n_e$

Miller 2007 after Reynolds 1996

10²⁶ [erg cm⁻²s⁻ Щ Ш 1010 10 100 1000 10000 100000 Energy [eV] Wilms after Garcia & Kallman, 2010

ionization parameter $\xi = 4\pi F_{\rm x}/n_e$

Miller 2007 after Reynolds 1996

10²⁶ 3.8 3.5 3.1 10²² [erg cm⁻²s⁻ 2.8 2.5 2.1 1018 1.8 1.5 1.1 1010 10 100 10000 100000 1000 Energy [eV] Wilms after Garcia & Kallman, 2010

ionization parameter $\xi = 4\pi F_{\rm x}/n_e$

➤ Comptonization of soft X-ray photos in hot corona with T ~ 108K: power law

- ➤ Comptonization of soft X-ray photos in hot corona with T ~ 108K: power law
- scattering of power law photos on the disk: reflection hump / Compton hump

- ➤ Comptonization of soft X-ray photos in hot corona with T ~ 108K: power law
- scattering of power law photos on the disk: reflection hump / Compton hump
- > photoabsorption of power law photos in disk: fluorescent lines, esp. Fe Kα at 6.4 keV

- ➤ Comptonization of soft X-ray photos in hot corona with T ~ 108K: power law
- scattering of power law photos on the disk: reflection hump / Compton hump
- > photoabsorption of power law photos in disk: fluorescent lines, esp. Fe Kα at 6.4 keV
- ➤ realistic disks: ionized, NOT neutral complex physics with a side of atomic physics & atomic data (see also lecture on high res spectroscopy)

Diagnostic potential

Diagnostic potential: inner disk inclination

➤ higher inclination ⇒ more line distortion, including stronger blue-shift (higher projected velocity!)

Diagnostic potential: emissivity

- ➤ emissivity = energy release per unit area
- \triangleright for a "classical" accretion disk: $\alpha = 3$

Relativistic iron line: real data

Inner disk radius in hard state

Basic idea (e.g. Esin 1997, Done 2007): thin cold accretion disk is truncated at certain radius & gives space to hot corona

- ➤ Measurements of inner disk radius differ by order of magnitude partly with the same data
- ➤ Different "tracks" with different methods (reflection vs. continuum fitting & lags), but different results even with similar methods
- ➤ Generally: increasing inner risk radius at lower luminosities

Comparison to BH population from GWs

different mass & spin distributions

- spins from X-ray measurements typically higher
- different populations? (Fishbach+2021, Belczynski+ 2021, etc.)

Hard tails & soft gamma-ray polarization

Excess emission about the "normal" Comptonization models at high energies (> 100-200 keV), only accessible with direct measurements above cut-off! INTEGRAL crucial

- ➤ different models
- ➤ possible state dependency
- ➤ intrinsic variability

Droulans et al. 2010

Black holes: Power spectra

Boeck et al. 2011

Power density spectrum

- ➤ a non-complex quantity obtained by multiplying the discrete Fourier transform and its complex conjugated quantity = the PDS is the squared magnitude of the complex Fourier transform
- measure of contribution of different frequencies to total variability
- ➤ XRBs: can typically be modelled with multiple broad & narrow Lorentzians

Papers VG finds especially good intros:

- Pottschmidt 2002 (PhD thesis)
- Nowak et al. 1999

Black holes: Power spectra

Power density spectrum

➤ power spectra (& other timing properties) are energy dependent!

Boeck et al. 2011

power spectra vs. spectral shape to trace the evolution of the power spectra

here: Cyg X-1 across multiple state transitions

- changes in variability properties when radio switches off
- ➤ hard state: higher frequency variability leads relatively stronger at higher energies
- soft state: if power law component present, it is highly variable

power spectra vs. spectral shape to trace the evolution of the power spectra

here: Cyg X-1 across multiple state transitions

- changes in variability properties when radio switches off
- ➤ hard state: higher frequency variability leads relatively stronger at higher energies
- soft state: if power law component present, it is highly variable

power spectra vs. spectral shape to trace the evolution of the power spectra

here: Cyg X-1 across multiple state transitions

- changes in variability properties when radio switches off
- ➤ hard state: higher frequency variability leads relatively stronger at higher energies
- soft state: if power law component present, it is highly variable

power spectra vs. spectral shape to trace the evolution of the power spectra

here: Cyg X-1 across multiple state transitions

- changes in variability properties when radio switches off
- ➤ hard state: higher frequency variability leads relatively stronger at higher energies
- soft state: if power law component present, it is highly variable

power spectra vs. spectral shape to trace the evolution of the power spectra

here: Cyg X-1 across multiple state transitions

- changes in variability properties when radio switches off
- ➤ hard state: higher frequency variability leads relatively stronger at higher energies
- soft state: if power law component present, it is highly variable

- ➤ Fourier-frequency dependent measure of the delay between the time series = difference in Fourier phase
- ➤ one "time lag" value usually refers to value averaged over Fourier frequencies
- ➤ time lag spectrum roughly proportional to f^{-0.7} (e.g., Nowak et al. 1999), but shows features (e.g., Miyamoto & Kitamoto 1989, Nowak 2000, Pottschmidt et al. 2000)

- ➤ Fourier-frequency dependent measure of the delay between the time series = difference in Fourier phase
- ➤ one "time lag" value usually refers to value averaged over Fourier frequencies
- ➤ time lag spectrum roughly proportional to f^{-0.7} (e.g., Nowak et al. 1999), but shows features (e.g., Miyamoto & Kitamoto 1989, Nowak 2000, Pottschmidt et al. 2000)

- ➤ Fourier-frequency dependent measure of the delay between the time series = difference in Fourier phase
- ➤ one "time lag" value usually refers to value averaged over Fourier frequencies
- ➤ time lag spectrum roughly proportional to f^{-0.7} (e.g., Nowak et al. 1999), but shows features (e.g., Miyamoto & Kitamoto 1989, Nowak 2000, Pottschmidt et al. 2000)

- ➤ Fourier-frequency dependent measure of the delay between the time series = difference in Fourier phase
- ➤ one "time lag" value usually refers to value averaged over Fourier frequencies
- ➤ time lag spectrum roughly proportional to f^{-0.7} (e.g., Nowak et al. 1999), but shows features (e.g., Miyamoto & Kitamoto 1989, Nowak 2000, Pottschmidt et al. 2000)

Hard lags

Grinberg+ 2014; based on Pottschmidt et al. 2003

Hard X-ray lag soft X-rays

- ➤ increase in hard state
- return to small values in soft state
- ➤ models: propagating fluctuations, jets, ...

Soft lags

0.3-1 keV to 1-4 keV

Kalemci et al. 2023 after Kara et al. 2021 & Wang et al. 2022

Soft X-rays lag hard X-rays

- ➤ first hints with RXTE, much better accessible with NICER
- ➤ increase in amplitude in decrease in frequency from hard to soft
- ➤ models: reverberation ("echo") from the disk, ...

Accretion/ejection connection

Jets

- dominate spectrum in radio and partly up to near-IR
- ➤ "fundamental plane": X-ray/radio correlation in AGN and XRBs, connecting black hole accretion on all scales
- ➤ contribution to X-rays unclear! X-ray emission from jet vs. more extended corona vs. corona as base of the jet
- coincidence (type B QPOs) or partial coincidence (timelags) between changes in timing properties and radio flares from jet

Winds

- ➤ driving mechanism
 - ➤ thermal implies large launching radii (10⁴-10⁵ R_G)
 - ➤ radiation pressure unlikely in XRBs, not enough UV radiation
 - magnetic viable, possible at smaller launching radii
- ➤ disappearance of wind absorption lines in hard state: over-ionization of the material, photoionization instabilities, geometri-cal obscuration of the outer disk or properties of wind driving?

Questions?

(HM)XBs as probes for their environment

X-ray binaries: The Zoo

A heterogeneous set of methods

- spectral (broad band vs. high res)
- ➤ timing / short-term variability
- spectral-timing
- polarization (low- vs. high energies)
- ➤ multiwavelength approaches
- ➤ theory

Figure 1.1: Classification of X-ray Binary Systems (Reig 2011)

HMXBs

- ➤ BeXRBs:
 - accretion from the Be-disk of the companion star
 - ➤ so far only neutron stars

➤ SGXBs

- accretion from the wind of a supergiant companion
- usually wind fed, but some disk feeding possible (also mixed cases)
- ➤ SFXTs important subclass with high dynamical range & shorts (~hours outbursts); outburst mechanism unclear

Accretion in highly magnetized neutron stars

- material captured by NS gravitational field
- ➤ material couples to magnetic field (no disk formation or a disk with a very large gap in the middle!)
- ➤ formation of accretion column close to NS surface
- cyclotron resonant scattering features ("cyclotron lines") in spectra of some neutron stars through quantization in high magnetic fields (direct measure of the B-field)
- strong pulse-phase dependence (LOS towards accretion columns)

Wilms 2014, after Davidson & Ostriker, 1973

Accretion in highly magnetized neutron stars

Becker & Wolff (2005a,b, 2007): Accretion shock dominates formation of observed continuum

- accretion mound produces soft X-rays (bremsstrahlung)
- ➤ X-rays are upscattered in accretion shock (bulk motion Comptonization)
- hard X-rays diffuse through walls of accretion column

supercritical accretion: column locally super-Eddington, radiation balances accreted matter subcritical accretion: Coulomb braking, some radiative pressure

Accretion & ejection processes

- ➤ labs for physics under extreme conditions
- ➤ AGN on fast-forward
- probes for material in their direct environment (esp. stellar winds in high mass stars)

Populations & evolution

- compact object merger progenitors (or not)
- probes for stellar and compact object evolutionary pathways

Accretion & ejection processes

- ➤ labs for physics under extreme conditions
- ➤ AGN on fast-forward
- probes for material in their direct environment (esp. stellar winds in high mass stars)

a few 10-100 R_G

Populations & evolution

- compact object merger progenitors (or not)
- probes for stellar and compact object evolutionary pathways

Accretion & ejection processes

- ➤ labs for physics under extreme conditions
- ➤ AGN on fast-forward
- probes for material in their direct environment (esp. stellar winds in high mass stars)

a few 10-100 R_G

>1000-10000 R_G

Populations & evolution

- compact object merger progenitors (or not)
- probes for stellar and compact object evolutionary pathways

Scales in XRBs

compared to the overall scales of the binary system, the complex physics close to the compact object is a point-like source!

winds influence the accretion rate and thus X-ray production

- ➤ long-term variability of HXMBs
- ➤ flares
- supergiant fast X-ray transients (SFXTs)

Radiation close to the compact object effectively X-rays the wind

- ➤ in situ probes close to the stellar surface
- different parts of the wind close to the orbital phases

One astronomers noise - is another's data!

Winds in massive stars

LH 72 in LMC; ESA/Hubble, NASA and D. A. Gouliermis

Line-driven winds:

- ➤ driven by radiation pressure (scattering of the star's UV radiation; CAK-winds after Castor, Abbott & Klein, 1975)
- ➤ mainly on UV lines
- \rightarrow mass loss $10^{-7} 10^{-4} M_{\odot}/\text{yr}$
- ➤ terminal velocity up to 3000 km/s

important for:

- evolution of the star itself
- supernova & gravitational wave progenitors
- > star formation
- ➤ enrichment

But: strong differences in mass loss estimates

Winds structure

Line-driving:

- ➤ unstable to velocity perturbations
- ➤ rapid growth of perturbations
- > strong shocks lead to wind clumping

Multiple lines of evidence for wind clumping from single stars, but no way to probe individual clumps & thus to test theoretical wind models

Winds structure

Line-driving:

- ➤ unstable to velocity perturbations
- ➤ rapid growth of perturbations
- > strong shocks lead to wind clumping

Multiple lines of evidence for wind clumping from single stars, but no way to probe individual clumps & thus to test theoretical wind models

Absorption variability in HMXBs

- ➤ typical clump crossing times ~a few 10s-1000s
- ➤ not accessible with today's high resolution Xray instruments (& only in brightest sources with non high res instruments!)
- ➤ chance to probe the structure of clump plasma

Absorption variability in HMXBs

- ➤ typical clump crossing times ~a few 10s-1000s
- ➤ not accessible with today's high resolution Xray instruments (& only in brightest sources with non high res instruments!)
- ➤ chance to probe the structure of clump plasma

Absorption variability in HMXBs

varying absorption as clumps pass through the line of sight: "dips"

- ➤ typical clump crossing times ~a few 10s-1000s
- ➤ not accessible with today's high resolution X-ray instruments (& only in brightest sources with non high res instruments!)
- ➤ chance to probe the structure of clump plasma

(Old) Athena science requirements

R-SCIOBJ-322: Athena shall determine the geometry, porosity and mass-loss rate of stellar winds of isolated massive stars, especially in the presence of magnetic fields, for a sample of Galactic massive stars. Time resolved spectral analysis of X-ray emission from a sample of high mass X-ray binaries hosting supergiant companions will provide an independent and representative probe of massive star wind properties.

Big questions

Wind properties:

- ➤ clumps: structure, size, shape & occurrence
- ➤ clumping onset
- ➤ wind acceleration zone
- ➤ wind's response to changes in irradiation
- ➤ co-rotating interaction regions (CIRs)
- ➤ mass loss rate

Accretion structure:

- ➤ clumps: structure, size, shape & occurrence
- ➤ accretion & photoinization wake structure
- clumpy accretion
- ➤ disk formation

mass loss rates in O/B stars accretion history of HMXBs

Challenge I: variability

Challenge I: variability

- continuum and wind variability need to be disentangled!
- ➤ variable continuum emission can influence wind material (e.g. through ionization)

clumps are denser & colder ⇒ lower ionization lines (theory easier for H- & He-like lines, really hard otherwise!)

Observations: $E_{\rm obs} \neq E_{\rm lit} \Longrightarrow$ Gas properties or lack of knowledge of atomic physics?

solution: lab measurements!

clumps are denser & colder ⇒ lower ionization lines (theory easier for H- & He-like lines, really hard otherwise!)

Observations: $E_{\rm obs} \neq E_{\rm lit} \Longrightarrow$ Gas properties or lack of knowledge of atomic physics?

solution: lab measurements!

https://ebit.llnl.gov/overviewEBIT.html

N. Hell (LLNL)

Hell et al. 2016

Challenge III: compact object-wind interaction

compact object disturbs the wind, resulting in large-scale wind structure (wakes, focussed wind)

- accretion wake: focussing of the wind through gravity
- photoionization wake: shocks on interface between wind and ionized plasma around neutron star

Most analytical & numerical models work with smooth winds only (but work by El Mellah & collaborators)

Challenge III: compact object-wind interaction

changes in illumination lead to changes in wind structure!

Cechura + Hadrava, 2015

Chance: compact object-wind interaction

changes in illumination lead to changes in wind structure!

Cechura + Hadrava, 2015

Clumpy accretion simulations

→ THE EUROPEAN SPACE AGENCY

El Mellah+ 2018

- ➤ 3D hydro simulations
- ➤ inhomogeneous flow and formation of bow shock
- complex effects close to the compact object (angular momentum conservation!)

Questions?

Questions?

Next: how do we do stuff?

Observational approaches

- broadband absorption traces wind structure
- ➤ narrow features traces plasma properties

Measuring absorption in X-rays

Measuring absorption in X-rays

- energy dependent absorption
- measured in equivalent hydrogen column density
- assumes known cross-sections and abundances

Wilms+ 2000

Measuring absorption in X-rays

- energy dependent absorption
- measured in equivalent hydrogen column density
- assumes known cross-sections and abundances

A plea:

- ➤ use modern models (e.g. tbabs)!
- state your abundances!

Wilms+ 2000

Two test cases

- ➤ black hole
- ➤ inclination of ~30°
- ➤ focussed wind & (small) disk

Vela X-1

- ➤ highly magnetized neutron star
- ➤ eclipsing
- ➤ wind accretion; wakes

Vela X-1

MAXI data, averaged over ~120 orbits: the average shape of absorption along the orbit

Vela X-1

individual orbits: highly variable wind structure

Diez+ 2023

Tracing the onset of the wake: large-scale structure & smaller scale variability

Cygnus X-1

- ➤ black hole
- ➤ inclination of ~30°
- ➤ focussed wind & (small) disk

Grinberg 2015

Cygnus X-1

- ➤ black hole
- ➤ inclination of ~30°
- ➤ focussed wind & (small) disk

Grinberg 2015

Smooth focussed wind:

Grinberg 2015

➤ does not explain variability :(

Smooth focussed wind:

Grinberg 2015

➤ does not explain variability :(

Smooth focussed wind:

Grinberg 2015

➤ does not explain variability :(

- ➤ discrete spherical clumps
- $\blacktriangleright \beta$ velocity law $v = v_{\infty} \left(1 R_{\star}/r \right)^{\beta}$
- ➤ no large scale wind structure
- ➤ focussed wind & (small) disk

Averages & standard deviations

Averages & standard deviations

➤ explains dips and some (not all!) variability; constrains on wind porosity

DEPENDS ON

DEPENDS ON

· LINE OF SIGHT (1 vs 2)

SHORT TERM VARIABILITY & CLUMPINESS

El Mellah, Grinberg + 2020

SHORT TERM VARIABILITY & CLUMPINESS

El Mellah, Grinberg + 2020

SHORT TERM VARIABILITY & CLUMPINESS

Chandra HETG observations

Chandra HETG observations

➤ divided in four absorption stages

Hirsch+ 2019

- ➤ divided in four absorption stages
- ➤ stronger absorption ⇒ lower ionization stages (of Si & S)

Hirsch+ 2019

- ➤ divided in four absorption stages
- ➤ stronger absorption ⇒ lower ionization stages (of Si & S)
- ➤ same Doppler shift for all lines (using the newest lab measurements)

Hirsch+ 2019

- ➤ divided in four absorption stages
- ➤ stronger absorption ⇒ lower ionization stages (of Si & S)
- ➤ same Doppler shift for all lines (using the newest lab measurements)
- ⇒ structured clumps with cold cores

Multiphase medium in Vela X-1: dips

Multiphase medium in Vela X-1: dips

- ➤ high & low ionization ions
- ⇒ hot & cold has present

Multiphase medium in Vela X-1: dips

- ➤ high & low ionization ions
- ⇒ hot & cold has present
- ⇒ highly ionized part of the wind vs. clumps shocks? clump in the wind? clump interaction with the compact object?

Multiphase medium in Vela X-1: wakes

Camilloni+ 2021; see also Amato 2020

Multiphase medium in Vela X-1: wakes

➤ looking through the photoinization wake ⇒ reasonable description with SPEX/Pion or Cloudy

But: problems at low ionization stages!

Solution: implement better atomic data!

Now: hints of different dynamics of cold + hot gas

Camilloni+ 2021; see also Amato 2020

Accretion & ejection processes

- ➤ labs for physics under extreme conditions
- ➤ AGN on fast-forward
- probes for material in their direct environment (esp. stellar winds in high mass stars)

Populations & evolution

- compact object merger progenitors (or not)
- probes for stellar and compact object evolutionary pathways

Questions?

