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Accretion & ejection processes  

➤ labs for physics under extreme conditions 
➤ AGN on fast-forward 
➤ probes for material in their direct 

environment (esp. stellar winds in high 
mass stars) 

Populations & evolution  

➤ compact object merger progenitors (or not) 
➤ probes for stellar and compact object 

evolutionary pathways 
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X-ray binaries: The Zoo

A heterogeneous set of objects 

➤ classified by compact object 
➤ black hole 
➤ neutron star 
➤ (white dwarf) 

➤ classified by companion 
➤ low mass X-ray binary 

(companion ≲ 1 solar 
mass) 

➤ high mass X-ray binary 
(companion ≳ 8 solar 
masses) 
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LMXBs vs HXMBs

LMXBs
➤ older systems, also seen at higher 

Galactic latitudes
➤ neutron stars: low magnetic fields
➤ catalogues: Avakyan et al. 2023 

(XRBCats, astro.uni-tuebingen.de/
~xrbcat), Liu et al. 2007

Bahramian & Degenaar 2023; 
pink - BH LMXBs; blue - other LMXBs 
note that this is NOT the full known sample
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LMXBs vs HXMBs

LMXBs
➤ older systems, also seen at higher 

Galactic latitudes
➤ neutron stars: low magnetic fields
➤ catalogues: Avakyan et al. 2023 

(XRBCats, astro.uni-tuebingen.de/
~xrbcat), Liu et al. 2007

HMXBs
➤ young system, in the galactic 

place, tracing stellar formation 
regions

➤ neutron stars: can have very high 
magnetic fields (impact onto 
accretion phenomena!)

➤ catalogues:  Fortin et al. 2023, 
Neumann et al. 2023

Bahramian & Degenaar 2023; 
pink - BH LMXBs; blue - other LMXBs 
note that this is NOT the full known sample
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X-ray binaries: LMXBs

Physical & observational properties mainly linked 
to binary configuration properties & nature of donor 
star, less to type of compact object 

➤ canonical Roche lobe overflow: main sequece or 
giant companion 

➤ most sources transients 
➤ ultra-compact binaries (orbital period < 80 min) 

➤ most persistent, some transient 
➤ symbiotic X-ray binaries (wind-fed) 

➤ accrete from wind of low-mass late-type 
supergiant 

➤ accreting ms X-ray pulsars (AMXPs) 
➤ progenitors of millisecond radio pulsars 

Esp. interesting: eclipsing sources! Bahramian & Degenaar 2023
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X-ray binaries: LMXBs

The nature of compact object: 

➤ bursts & pulsations ⟹ neutron star 
➤ radial velocity & mass estimates ⟹ 

inclination dependence, but 
unambiguous identification for black 
holes if above 3 solar masses 

➤ disk-jet coupling ⟹ both NS and BH 
show jets, but BHs are brighter in radio 
by factor 5-20 at same X-ray luminosity 

➤ quiescent X-ray properties ⟹ NS 
have surface giving rise to black body 
emission in quiescence (note: absence 
not evidence for BH accretor!) 

➤ … and many others
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X-ray binaries: The Zoo

A heterogeneous set of 
methods 

➤ spectral (broad band vs. high 
res) 

➤ timing / short-term variability 
➤ spectral-timing 
➤ polarization (low- vs. high 

energies) 
➤ multiwavelength approaches 
➤ theory
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Lecture aims & biases

Aims
➤ enable you to (roughly) follow talks & papers on X-ray binaries
➤ enable you to find overlaps with your own research field -> enable collaborations
➤ give you a feeling for (some) open questions in the field
➤ less of “this is the one and only answer” and a lot of “the community does not agree on this”
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Lecture aims & biases

Aims
➤ enable you to (roughly) follow talks & papers on X-ray binaries
➤ enable you to find overlaps with your own research field -> enable collaborations
➤ give you a feeling for (some) open questions in the field
➤ less of “this is the one and only answer” and a lot of “the community does not agree on this”

Biases
➤ the speaker & her perspective/knowledge
➤ basics vs. newest developments
➤ likely lots of unconscious bias 

Two parts to the lecture:
➤ accretion/ejection - an observational view using mainly BHs as example
➤ X-ray binaries as probes for their environment using winds of companion stars
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Questions?
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Accretion/ejection in 
BH (LM)XBs
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Black holes: Variability & Outbursts
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➤ transient sources 
➤ persistent souces 
➤ quasi-persistent, e.g. 

GRS 1915+105 extended 
outburst
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Black holes: Variability & Outbursts

Kalemci et al. 2023
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Black holes: States
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Nowak+ 2011 
Chandra + Suzaku/XIS + Suzaku/GSO + RXTE/PCA + RXTE/HEXTE + INTEGRAL/ISGRI
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strong disk 
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Black holes: Power spectra

Boeck et al. 2011

Power density spectrum 

➤ a non-complex quantity obtained by multiplying 
the discrete Fourier transform and its complex 
conjugated quantity = the PDS is the squared 
magnitude of the complex Fourier transform 

➤ measure of contribution of different frequencies 
to total variability 

➤ XRBs: can typically be modelled with multiple 
broad & narrow Lorentzians 

Papers VG finds especially good intros: 
• Pottschmidt 2002 (PhD thesis) 
• Nowak et al. 1999 
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Black holes: Power spectra

Remillard & McClintock 2006

Spectral and timing properties are 
correlated (both in the same 
source and across sources)!
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Black holes: X-ray radio correlation

➤ The very first detection official 
detection of a state transition 
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Black holes: X-ray radio correlation

Boeck et al. 2011
hard soft
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Black holes: X-ray radio correlation

For a given black hole X-ray binary, the radio 
emission is correlated with X-ray emission: 
➤ radio detected in hard state 
➤ (mostly) no radio in soft state 
➤ radio flares most often during transition 
➤ hints of simultaneous radio & X-ray flares for 

several sources such as Cyg X-1 and GRS 
1915-105 

➤ detections of extended radio emission in hard 
state 

Boeck et al. 2011
hard soft
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Black holes:q-track / turtlehead-diagram

HID:  hardness luminosity diagram 

 

or 

hardness =
CRhard band

CRsoft band

hardness =
CRhard band − CRsoft band

CRsoft band + CRsoft band
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Black holes:q-track / turtlehead-diagram

HID:  hardness luminosity diagram 

 

or 

hardness =
CRhard band

CRsoft band

hardness =
CRhard band − CRsoft band

CRsoft band + CRsoft band



+ Disk winds
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Q-track shapes:

Kalemci et al. 2023
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Black holes:q-track / turtlehead-diagram

Motta et al. 2021

Outbursts even from the same source show 
a variety of behaviors so the q-track in not 
always q-shaped: 
➤ full outburst (at different maximum 

intensities!) 
➤ failed outbursts 
➤ high only outbursts  
➤ …  
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Disk winds

➤ soft state: blue-shifted absorption lines in high inclination sources ⟹ ionized, equatorial outflows 
➤ mass outflow rate can exceed the mass accretion rate through disks  
➤ hard state: detection of “cold” winds in optical/IR observations 

Kalemci+ 2023 after (NASA/CXC/U.Michigan/
J.Miller+ 2006 (left) & Ponti+ 2012 (right)
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Low-frequency quasi-periodic oscillations (QPOs)

➤ hard state: broad noise components 
➤ bright hard: variability shifts & often becomes 

more concentrated ⟹ type C QPOs 
➤ likely geometric origin due to 

inclination dependence (Heil et al. 
2015; Motta et al. 2015) 

➤ often accompanied by harmonics 
➤ hard intermediate state: broad band noise 

drops, but QPOs increases, until suddenly 
drops 

➤ replaced by type B QPOs: 1-6 Hz, typically 
lower amplitude than type C, short-lived 
(smtimes a few hundred seconds), also 
inclination dependent 

➤ soft state: usually no QPOs, handful type A 
detections (possible subset of Bs?) Kalemci et al. 2023
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Terminology & a few words of caution

Low/high vs. hard/soft vs. powerlaw/thermal
➤ low/high: emission in soft X-rays (oldest state definition, driven by soft X-ray instruments)
➤ hard/soft: very empirical description of spectral shape
➤ powerlaw/thermal (Remillard & McClintock, 2006): less empirical description of spectral shape
➤ intermediate/transitions, anomalous, hard intermedia vs. soft intermediate, etc.
➤ different “flavors” of hard state, with possibly different underlying accretion geometries 
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Terminology & a few words of caution

Low/high vs. hard/soft vs. powerlaw/thermal
➤ low/high: emission in soft X-rays (oldest state definition, driven by soft X-ray instruments)
➤ hard/soft: very empirical description of spectral shape
➤ powerlaw/thermal (Remillard & McClintock, 2006): less empirical description of spectral shape
➤ intermediate/transitions, anomalous, hard intermedia vs. soft intermediate, etc.
➤ different “flavors” of hard state, with possibly different underlying accretion geometries 

Clear defined states vs. a continuum
➤ “jumps” in some properties (esp. timing properties)
➤ radio ejections
➤ smooth changes in spectral shape
➤ VG: likely a continuum, with some configurations being especially stable

q-track / turtlehead diagram
➤ many outburst are “failed”, never reading the soft state
➤ shape of q-track depends on: source, incl. inclination; instrument used; units used
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q-track outliers
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q-track outliers

➤ Cygnus X-1: not a transient, likely occupies only 
a narrow range on HID

➤ GRS 1915+105: distinct, repeating variability 
patterns; recently - possibly a highly obscured 
state

➤ 1E 1740.7–2942 and GRS 1758–258: most of 
the time in a hard state, but will sometimes 
descrease in luminosity to enter soft state

➤ 4U 1630–47 : changes the direction of 
movement through outburst

➤ …
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Stability of states

Grinberg 2013
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Stability of states

Q-tracks provide no information 
on the overall timing of an 
outburst:

➤ how much time does the source 
spend in a given state, i.e. how 
“stable” is a given state?

➤ how fast are state transitions?

typically: fast transitions, hard & soft 
relatively stable; e.g. Böck et al for a 
state transition within a few hours

Right: the probability of Cygnus X-1 
to remain in the same state for hard, 
intermediate and soft states Grinberg 2013
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Neutron star LXMBs

Van der Klis et al. 2006 
(on ArXiv: 2004)

Atoll source Z source
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Neutron star LXMBs

Van der Klis et al. 2006 
(on ArXiv: 2004)

Z-sources 

High luminosity LMXBs, close to 
Eddington luminosity 

horizontal branch: strong variability, 
Horizontal branch oscillations (~50 
Hz) 

normal branch: weaker variability 

flaring branch: mostly thermal 
spectrum
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Neutron star LXMBs

Van der Klis et al. 2006 
(on ArXiv: 2004)

Atoll sources 

usually lower luminosity than X-
sources 

banana state: higher luminosity, low 
frequency noise dominates variability 

island state: lower luminosity, high 
frequency noise dominates variability 

rough correspondence to soft+hard 
states 

source movement: timescales of 
days-weeks, faster in banana state
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Questions?
Next: physics & open questions
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Continuum formation
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above 10 keV:
➤ exponentially cutoff power law
➤ cutoff: 50-300 keV for black 

holes, less for neutron stars
➤ non-thermal hard tails in some 

sources

below 10 keV:
➤ sum of power law + disk 

contribution
➤ emission lines (esp. iron line)
➤ absorption
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Continuum formation

corona models: 
➤ Comptonization from a hot 

electron plasma surrounding the 
disk (Haardt & Maraschi (1991), 
Dove+ (1998), ….) 

lamppost models: 
➤ Comptonization from the base of 

a jet (Matt+ (1992), Markoff+ 
(2005), ….) 

… or is the base of the jet the 
corona? 

Coronal geometry is still one of the 
(THE?) big questions!

Modified from Nowak et al. 2011



Reynolds & Nowak 2003
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Continuum formation

Nowak et al. 2011
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➤ Different spectral models result in similar statistical significance -> pure (continuum) unlikely to 
solve the problem 

➤ multiple high end models (comptonization models, JED - Petrucci & al., agnjet - Markoff & al.) 
➤ other approaches: multi-method approaches (spectro-timing, polarization), reflection features 

(iron lines), … 
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Relativistically broadened iron lines

A. Santangelo

Most black holes & many neutron star X-ray 
binaries show reflection components and 
relativistically broadened iron lines (and so do 
AGN!); sometimes (detectable) only in certain 
states



38

Relativistically broadened iron lines

A. Santangelo

Most black holes & many neutron star X-ray 
binaries show reflection components and 
relativistically broadened iron lines (and so do 
AGN!); sometimes (detectable) only in certain 
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Fabian & Ross 2002
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Relativistically broadened iron lines

Fabian & Ross 2002
A. Santangelo

➤ For an emission line close to the compact object, relativistic 
effects will lead to changes in its shape 

➤ Note: relativistic effect affect all emission, not just lines! -> 
continuum fitting method for spin measurements 
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X-ray Reflection

Miller 2007 after Reynolds 1996

neutral disk irradiated by power law
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X-ray Reflection
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X-ray Reflection

Miller 2007 after Reynolds 1996
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X-ray Reflection

Miller 2007 after Reynolds 1996
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Relativistically broadened iron lines

Kalemci et al. 2023

➤ Comptonization of soft X-ray photos in hot corona with T ~ 108K: power law
➤ scattering of power law photos on the disk: reflection hump / Compton hump
➤ photoabsorption of power law photos in disk: fluorescent lines, esp. Fe Kα at 6.4 keV
➤ realistic disks: ionized, NOT neutral - complex physics with a side of atomic physics & atomic 

data (see also lecture on high res spectroscopy)
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Diagnostic potential

a) inclination θo
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➤ higher spin ⟹ smaller ISCO ⟹ 
more distortion 

Dauser 2010

Reynolds 2020
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Diagnostic potential: inner disk inclination

Dauser 2010
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➤ higher inclination ⟹ more line distortion, including stronger 
blue-shift (higher projected velocity!)
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Diagnostic potential: emissivity

Dauser 2010

➤ emissivity = energy release per unit area 
➤ for a “classical” accretion disk: α = 3
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Relativistic iron line: real data

Garcia+ 2019 Tomsick+ 2014

Miller 2007
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Inner disk radius in hard state

Nemmen+ 2023

GX 339-4 Basic idea (e.g. Esin 1997, Done 
2007): thin cold accretion disk is 
truncated at certain radius & gives 
space to hot corona 

➤ Measurements of inner disk radius 
differ by order of magnitude - partly 
with the same data 

➤ Different “tracks” with different 
methods (reflection vs. continuum 
fitting & lags), but different results 
even with similar methods 

➤ Generally: increasing inner risk 
radius at lower luminosities 
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Comparison to BH population from GWs

different mass & 
spin distributions 

➤ spins from X-ray 
measurements 
typically higher 

➤ different 
populations? 
(Fishbach+2021, 
Belczynski+ 
2021, etc.) 
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Hard tails & soft gamma-ray polarization

Droulans et al. 2010

Excess emission about the “normal” Comptonization 
models at high energies (> 100-200 keV), only 
accessible with direct measurements above cut-off! 
INTEGRAL crucial 

➤ different models 
➤ possible state dependency 
➤ intrinsic variability

Cangemi et al. 2021



Cangemi et al. 2022
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Black holes: Power spectra

Boeck et al. 2011

Power density spectrum 

➤ a non-complex quantity obtained by multiplying 
the discrete Fourier transform and its complex 
conjugated quantity = the PDS is the squared 
magnitude of the complex Fourier transform 

➤ measure of contribution of different frequencies 
to total variability 

➤ XRBs: can typically be modelled with multiple 
broad & narrow Lorentzians 

Papers VG finds especially good intros: 
• Pottschmidt 2002 (PhD thesis) 
• Nowak et al. 1999 
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Black holes: Power spectra

Boeck et al. 2011

Power density spectrum 

➤ power spectra (& other timing properties) are 
energy dependent! 
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Power spectral evolution

power spectra vs. spectral shape to trace the 
evolution of the power spectra  

here: Cyg X-1 across multiple state 
transitions 
➤ changes in variability properties when 

radio switches off 
➤ hard state: higher frequency variability 

leads relatively stronger at higher energies 
➤ soft state: if power law component present, 

it is highly variable 

Some open questions: origin of the variability 
components? Models exist (propagating 
fluctuations; jets), but unclear which correct 100101
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Power spectral evolution
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Power spectral evolution
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Timelags

Timelags  

➤ Fourier-frequency dependent measure of the 
delay between the time series = difference in 
Fourier phase 

➤ one “time lag” value usually refers to value 
averaged over Fourier frequencies 

➤ time lag spectrum roughly proportional to f-0.7 
(e.g., Nowak et al. 1999), but shows features 
(e.g., Miyamoto & Kitamoto 1989, Nowak 2000, 
Pottschmidt et al. 2000)  
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Timelags

Timelags  

➤ Fourier-frequency dependent measure of the 
delay between the time series = difference in 
Fourier phase 

➤ one “time lag” value usually refers to value 
averaged over Fourier frequencies 

➤ time lag spectrum roughly proportional to f-0.7 
(e.g., Nowak et al. 1999), but shows features 
(e.g., Miyamoto & Kitamoto 1989, Nowak 2000, 
Pottschmidt et al. 2000)  
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Timelags

Timelags  
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Hard lags

Hard X-ray lag soft X-rays  

➤ increase in hard state 
➤ return to small values in soft state 
➤ models: propagating fluctuations, jets, … 
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Grinberg+ 2014; based on Pottschmidt et al. 2003

Reig et al. 2018

9.4-15 keV to 2.1-4.5 keV
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Soft lags

Kalemci et al. 2023 after Kara et al. 2021 & Wang et al. 2022

0.3-1 keV to 1-4 keV
Soft X-rays lag hard X-rays 

➤ first hints with RXTE, much 
better accessible with 
NICER 

➤ increase in amplitude in 
decrease in frequency from 
hard to soft 

➤ models: reverberation 
(“echo”) from the disk, …
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Accretion/ejection connection

Winds 

➤ driving mechanism 
➤ thermal - implies large launching radii 

(104-105 RG) 
➤ radiation pressure - unlikely in XRBs, 

not enough UV radiation 
➤ magnetic - viable, possible at smaller 

launching radii 
➤ disappearance of wind absorption lines in hard 

state: over-ionization of the material, 
photoionization instabilities, geometri-cal 
obscuration of the outer disk or properties of 
wind driving?

Jets  

➤ dominate spectrum in radio and partly up to 
near-IR 

➤ “fundamental plane”: X-ray/radio correlation in 
AGN and XRBs, connecting black hole 
accretion on all scales 

➤ contribution to X-rays unclear! X-ray emission 
from jet vs. more extended corona vs. corona 
as base of the jet 

➤ coincidence (type B QPOs) or partial 
coincidence (timelags) between changes in 
timing properties and radio flares from jet 
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Questions?
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(HM)XBs as probes for 
their environment
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X-ray binaries: The Zoo

A heterogeneous set of 
methods 

➤ spectral (broad band vs. high 
res) 

➤ timing / short-term variability 
➤ spectral-timing 
➤ polarization (low- vs. high 

energies) 
➤ multiwavelength approaches 
➤ theory
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HMXBs

➤ BeXRBs:  
➤ accretion from the Be-disk of the 

companion star 
➤ so far only neutron stars 

➤ SGXBs 
➤ accretion from the wind of a 

supergiant companion 
➤ usually wind fed, but some disk 

feeding possible (also mixed 
cases) 

➤ SFXTs important subclass with 
high dynamical range & shorts 
(~hours outbursts); outburst 
mechanism unclear

Van den Heuvel 2004
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Accretion in highly magnetized neutron stars

➤ material captured by NS gravitational 
field 

➤ material couples to magnetic field (no 
disk formation or a disk with a very large 
gap in the middle!) 

➤ formation of accretion column close to 
NS surface 

➤ cyclotron resonant scattering features 
(“cyclotron lines”) in spectra of some 
neutron stars through quantization in 
high magnetic fields (direct measure of 
the B-field) 

➤ strong pulse-phase dependence (LOS 
towards accretion columns)
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Magnetosphere

Al
fv

én
su

rfa
ce

accretion
column

hot spot

v ⇠ 0.7c
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Wilms 2014, after Davidson & Ostriker, 1973  
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Accretion in highly magnetized neutron stars

Becker & Wolff

Becker & Wolff (2005a,b, 2007): Accretion 
shock dominates formation of observed 
continuum 

➤ accretion mound produces soft X-rays 
(bremsstrahlung)  

➤ X-rays are upscattered 
in accretion shock (bulk motion 
Comptonization)  

➤ hard X-rays diffuse through walls of 
accretion column  

supercritical accretion: column locally 
super-Eddington, radiation balances 
accreted matter 
subcritical accretion: Coulomb braking, 
some radiative pressure



Accretion & ejection processes  

➤ labs for physics under extreme conditions 
➤ AGN on fast-forward 
➤ probes for material in their direct 

environment (esp. stellar winds in high 
mass stars) 

Populations & evolution  

➤ compact object merger progenitors (or not) 
➤ probes for stellar and compact object 

evolutionary pathways 
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a few 10-100 RG 



Accretion & ejection processes  

➤ labs for physics under extreme conditions 
➤ AGN on fast-forward 
➤ probes for material in their direct 

environment (esp. stellar winds in high 
mass stars) 

Populations & evolution  

➤ compact object merger progenitors (or not) 
➤ probes for stellar and compact object 

evolutionary pathways 

a few 10-100 RG 

>1000-10000 RG
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Scales in XRBs

-

Eat EFFE
oEFFECTION ➤ compared to the overall scales of 

the binary system, the complex 
physics close to the compact 
object is a point-like source!



winds influence the accretion rate and 
thus X-ray production  

➤ long-term variability of HXMBs 
➤ flares 
➤ supergiant fast X-ray transients (SFXTs) 

Radiation close to the compact object 
effectively X-rays the wind 

➤ in situ probes close to the stellar surface 
➤ different parts of the wind close to the orbital 

phases 
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One astronomers noise - is another’s data!
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Winds in massive stars

LH 72 in LMC; ESA/Hubble, NASA and D. A. Gouliermis 

Line-driven winds: 
➤ driven by radiation pressure (scattering of the 

star’s UV radiation; CAK-winds after Castor, 
Abbott & Klein, 1975)  

➤ mainly on UV lines 
➤ mass loss  
➤ terminal velocity up to 3000 km/s 

important for: 
➤ evolution of the star itself 
➤ supernova & gravitational wave progenitors 
➤ star formation 
➤ enrichment 

But: strong differences in mass loss estimates

10−7 − 10−4 M⊙/yr
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Winds structure

El Mellah+ 2018; Sundqvist+ 2018

Line-driving: 
➤ unstable to velocity perturbations  
➤ rapid growth of perturbations 
➤ strong shocks lead to wind clumping

Multiple lines of evidence for wind 
clumping from single stars, but no way 
to probe individual clumps & thus to 
test theoretical wind models
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Winds structure

El Mellah+ 2018; Sundqvist+ 2018

Line-driving: 
➤ unstable to velocity perturbations  
➤ rapid growth of perturbations 
➤ strong shocks lead to wind clumping

Multiple lines of evidence for wind 
clumping from single stars, but no way 
to probe individual clumps & thus to 
test theoretical wind models
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Absorption variability in HMXBs

El Mellah

varying absorption as  clumps  pass through  
the line of sight: “dips”

➤ typical clump crossing times ~a few 10s-1000s 
➤ not accessible with today’s high resolution X-

ray instruments (& only in brightest sources 
with non high res instruments!) 

➤ chance to probe the structure of clump plasma
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Absorption variability in HMXBs

El Mellah
Observed time [ks]
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➤ typical clump crossing times ~a few 10s-1000s 
➤ not accessible with today’s high resolution X-

ray instruments (& only in brightest sources 
with non high res instruments!) 

➤ chance to probe the structure of clump plasma

Hirsch+ 2019
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(Old) Athena science requirements

R-SCIOBJ-322: Athena shall determine the geometry, porosity and mass-loss rate of stellar winds 
of isolated massive stars, especially in the presence of magnetic fields, for a sample of Galactic 
massive stars. Time resolved spectral analysis of X-ray emission from a sample of high 
mass X-ray binaries hosting supergiant companions will provide an independent and 
representative probe of massive star wind properties. 
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Big questions

Wind properties: 
➤ clumps: structure, size, shape & occurrence 
➤ clumping onset 
➤ wind acceleration zone 
➤ wind’s response to changes in irradiation 
➤ co-rotating interaction regions (CIRs) 
➤ mass loss rate 

Accretion structure: 
➤ clumps: structure, size, shape & occurrence 
➤ accretion & photoinization wake structure 
➤ clumpy accretion 
➤ disk formation 

mass loss rates in O/B stars 
accretion history of HMXBs

G
rin

be
rg

+ 
20

17
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Challenge I: variability
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Challenge I: variability

Vela X-1
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➤ continuum and wind variability need to be 
disentangled! 

➤ variable continuum emission can influence 
wind material (e.g. through ionization)
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Challenge II: Atomic data

clumps are denser & colder ⟹ lower 
ionization lines (theory easier for H- & 
He-like lines, really hard otherwise!) 

Observations:  ⟹ Gas 
properties or lack of knowledge of 
atomic physics? 

solution: lab measurements!

Eobs ≠ Elit
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Challenge II: Atomic data

clumps are denser & colder ⟹ lower 
ionization lines (theory easier for H- & 
He-like lines, really hard otherwise!) 

Observations:  ⟹ Gas 
properties or lack of knowledge of 
atomic physics? 

solution: lab measurements!

Eobs ≠ Elit

https://ebit.llnl.gov/overviewEBIT.html
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Challenge II: Atomic data
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Challenge II: Atomic data

N. Hell (LLNL)
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Hell et al. 2016
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Challenge III: compact object-wind interaction

Manousakis et al. 2013

Blondin+ 1990

compact object disturbs the wind, 
resulting in large-scale wind structure 
(wakes, focussed wind) 

➤ accretion wake: focussing of the wind 
through gravity  

➤ photoionization wake: shocks on inter- 
face between wind and ionized 
plasma around neutron star  

Most analytical & numerical models work 
with smooth winds only (but work by El 
Mellah & collaborators)



77

Challenge III: compact object-wind interaction

changes in illumination 
lead to changes in wind 
structure! 

Cechura + Hadrava, 2015
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Chance: compact object-wind interaction

changes in illumination 
lead to changes in wind 
structure! 

Cechura + Hadrava, 2015
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Clumpy accretion simulations

El Mellah+ 2018

➤ 3D hydro simulations 

➤ inhomogeneous flow and formation 
of bow shock 

➤ complex effects close to the compact 
object (angular momentum 
conservation!)
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Questions?
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Questions?
Next: how do we do stuff?
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Observational approaches

➤ broadband absorption traces wind structure 
➤ narrow features traces plasma properties
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Measuring absorption in X-rays

Wilms+ 2000
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Measuring absorption in X-rays

Wilms+ 2000

➤ energy dependent absorption
➤ measured in equivalent hydrogen 

column density 
➤ assumes known cross-sections and 

abundances
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Measuring absorption in X-rays

Wilms+ 2000

➤ energy dependent absorption
➤ measured in equivalent hydrogen 

column density 
➤ assumes known cross-sections and 

abundances

A plea:
➤ use modern models (e.g. tbabs)!
➤ state your abundances!
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Partial coverers

Diez+ 2022

continuum

Credit: Casey Reed/Penn State University
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Partial coverers

Diez+ 2022

  CF NH,1 Stellar wind 
absorption

continuum

cont ⋅ CF ⋅ NH,1

Credit: Casey Reed/Penn State University
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Partial coverers

Diez+ 2022

  CF1-   CF
NH,1 Stellar wind 

absorption

continuum

cont ⋅ CF ⋅ NH,1

Credit: Casey Reed/Penn State University
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Partial coverers

Diez+ 2022

  CF1-   CF
NH,1

NH,2

Stellar wind 
absorption

ISM absorption

continuum

cont ⋅ CF ⋅ NH,1

Credit: Casey Reed/Penn State University
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Partial coverers

Diez+ 2022

  CF1-   CF
NH,1

NH,2

Stellar wind 
absorption

ISM absorption

cont ⋅ (1 − CF ) ⋅ NH,2

continuum

cont ⋅ CF ⋅ NH,1

Credit: Casey Reed/Penn State University
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Partial coverers

Diez+ 2022

  CF1-   CF
NH,1

NH,2

Stellar wind 
absorption

ISM absorption

cont ⋅ CF ⋅ NH,1 ⋅ NH,2cont ⋅ (1 − CF ) ⋅ NH,2

continuum

cont ⋅ CF ⋅ NH,1

Credit: Casey Reed/Penn State University
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Partial coverers

Diez+ 2022

  CF1-   CF
NH,1

NH,2

Stellar wind 
absorption

ISM absorption

NH,2 ⋅ continuum ⋅ [CF ⋅ NH,1 + (1 − CF )]

cont ⋅ CF ⋅ NH,1 ⋅ NH,2cont ⋅ (1 − CF ) ⋅ NH,2

continuum

cont ⋅ CF ⋅ NH,1

Credit: Casey Reed/Penn State University
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Two test cases

Hanke 2011

Amato+ 2020

Cygnus X-1 
➤ black hole 
➤ inclination of ~30° 
➤ focussed wind & (small) disk

Vela X-1 
➤ highly magnetized neutron star 
➤ eclipsing 
➤ wind accretion; wakes
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Vela X-1

Amato+ 2020

Doroshenko+ 2013

MAXI data, averaged over ~120 orbits:  the 
average shape of absorption along the orbit
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Vela X-1

Amato+ 2020

individual orbits: highly variable wind structure

Kretschmar+ 2021
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Vela X-1

Amato+ 2020

Tracing the onset of the wake: large-scale 
structure & smaller scale variability

Diez+ 2023
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Cygnus X-1

Hanke 2011

Cygnus X-1 
➤ black hole 
➤ inclination of ~30° 
➤ focussed wind & (small) disk

Grinberg 2015
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Cygnus X-1

Hanke 2011

Cygnus X-1 
➤ black hole 
➤ inclination of ~30° 
➤ focussed wind & (small) disk
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Cygnus X-1

Grinberg 2015
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Smooth focussed wind:

➤ does not explain variability :(
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Cygnus X-1
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Smooth focussed wind:

➤ does not explain variability :(
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Cygnus X-1
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Smooth focussed wind:

➤ does not explain variability :(
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Clumpy stellar winds

➤ discrete spherical clumps 

➤  velocity law  
➤ no large scale wind structure 
➤ focussed wind & (small) disk 

β v = v∞ (1 − R⋆/r)β
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Clumpy stellar winds
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Grinberg+ 2015
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Clumpy stellar winds
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Clumpy stellar winds
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Clumpy stellar winds
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➤ explains dips and some (not all!) variability; constrains on wind porosity
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Clumps structure in Cygnus X-1

Hirsch+ 2019
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Clumps structure in Cygnus X-1

Hirsch+ 2019
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➤ divided in four absorption stages
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Clumps structure in Cygnus X-1
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➤ divided in four absorption stages

➤ stronger absorption ⟹ lower 
ionization stages (of Si & S)
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Clumps structure in Cygnus X-1
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➤ divided in four absorption stages

➤ stronger absorption ⟹ lower 
ionization stages (of Si & S)

➤ same Doppler shift for all lines (using 
the newest lab measurements)
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Clumps structure in Cygnus X-1

Hirsch+ 2019

non-dip
weak dip

dip
strong dip

➤ divided in four absorption stages

➤ stronger absorption ⟹ lower 
ionization stages (of Si & S)

➤ same Doppler shift for all lines (using 
the newest lab measurements)

⟹ structured clumps with cold cores
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Multiphase medium in Vela X-1: dips
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Multiphase medium in Vela X-1: dips

➤ high & low ionization ions

⟹ hot & cold has present
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Multiphase medium in Vela X-1: dips

➤ high & low ionization ions

⟹ hot & cold has present

⟹ highly ionized part of 
the wind vs. clumps - 
shocks? clump in the wind? 
clump interaction with the 
compact object?

S
i
V
I
I
I

S
i
V
I
I

S
i
I
I
–
V
I

7.47.276.86.66.46.26

1000

800

600

200

0

400

Vela X-1 with Chandra-HETG
2

1.5

1

0.5

(EBIT) @ LLNL
Electron Beam Ion Trap
Lab measurements with

S
i
X
I
V

S
i
X
I
I
I
r

S
i
X
I
I
I
f

S
i
X
I
I

S
i
X
I

S
i
X

S
i
I
X

R
a
t
io

Wavelength [Å]
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Multiphase medium in Vela X-1: wakes

Camilloni+ 2021; see also Amato 2020



96

Multiphase medium in Vela X-1: wakes

➤ looking through the 
photoinization wake  ⟹ 
reasonable description with 
SPEX/Pion or Cloudy

But: problems at low ionization 
stages!

Solution: implement better 
atomic data!

Now: hints of different dynamics 
of cold + hot gas

Camilloni+ 2021; see also Amato 2020



Accretion & ejection processes  

➤ labs for physics under extreme conditions 
➤ AGN on fast-forward 
➤ probes for material in their direct 

environment (esp. stellar winds in high 
mass stars) 

Populations & evolution  

➤ compact object merger progenitors (or not) 
➤ probes for stellar and compact object 

evolutionary pathways 
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Questions?


