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The equivalence principle

Weak equivalence principle (universality of free fall):

» |nertial and gravitational masses are in identical ratio for all bodies
-> The trajectory of a point mass in a gravitational field depends only
on its initial position and velocity, and is independent of its

composition and structure

Strong equivalence principle:

e The outcome of any local experiment (gravitational or not) in a
freely falling laboratory is independent of the velocity of the

laboratory and its location in spacetime.



The metricin flat spacetime

Minkowski (flat) space-time

ds®> = — c?dt* + dx* + dy* + dz?

Signature (—,+,+,+)

conventions may vary!

Metric tensor %,  so that: ds? = ﬂaﬁdx“dxﬁ with a=0,1,2,3
ct! ds = (0
-1 0 0 O
10 1 0O
”aﬂ — 0O 01 0 Iightco?e
o oo 1l




The metric: change of coordinates

Coordinate transformation from x* (in which the metric is flat) to y¥ using x“(y*)

Minkowski metric ds* = naﬂdxadxﬁ

ox* ox"
: 2 _ : —
Curved metric ds” = gaﬂdy“dyﬁ with ap = Iy dy 5 m

The metric is symmetric and non-singular

Examples (space only):

Flat space in curved coordinates: ds* = dr* +r? (dez + sin” 9d¢2)

Curved space: ds® = dr* + sin’r (d(92 + sin’ ngbz)



Vectors, tensors and the dual space

Metric 8ap

inverse metric g%  soas: g® 8ap = 5aﬁ

a

Vector transformation under coordinate change Vi(y) = P VE(x)
XH
ox*
Vector in the dual space transformation Voy) = WVM(X)
| 5 oxt ayP oy’
Tensor transformation T)(y) = T "°(x)
dy® ox¥ ox° *

Index raising and lowering using the metric tensor V. = gaﬂV/’



The geodesic equation

Find the "shortest" path in spacetime g7 — \/ g ﬁ)'c“)'cﬁd/l x4 (A) 4
i+ 3% =0
a,B /11
n (=number of dimensions) 2nd order non-linear diff. egs.
Christoffel symbols:
. . o e L. agaﬁ
Christoffel symbols depend on the metric and its first derivatives 8oy = >
9 x}/
In flat space-time all metric derivatives vanish: [ =0 - X =0



Covariant derivative

Vector (or tensor) derivatives along the curve

DV#  dV¥ dx” J)
= FIF VO — !
DA d/ b di

For example: the affine parameter is the proper time of the particle T

The acceleration:

Du*  du” dx’  d’x* dx® dx?  f*
= +I* u%—— = +I* = —

DL dr af " dr dr? of dr dr m

If not external forces are present the particle moves along a geodesic



The equivalence principle and local flatness

Strong equivalence principle:
 The outcome of any local experiment (gravitational or not) in a
freely falling laboratory is independent of the velocity of the

laboratory and its location in spacetime.

Assume a general (curved) space-time, described by the metric 8aﬂ(x)

At any point P we can find coordinates Yy  such that the metric is locally flat in these

coordinates, and its first derivatives vanish locally

Tp

, ox* ox*
gaﬁ(y=P)=g,uyaya ayﬁ(y=P)=}7aﬂ/ # e /

/
aﬂ manifold

W(y )

M

Carroll, gr-qc/9712019



The equivalence principle and local flatness (contd.)

How to express any physical law in a curved spacetime:

1. Make a coordinate transformation to a locally flat (free falling) system
2. Write down your law in the locally flat system (use covariant form)

3. Transform back to the original coordinate system



Parallel transportalong a curve

VA

Does a vector, translated parallel to
itself along a curve, returns to itself?

AV = R“ﬁﬂ yV”dx”dx”

Riemann tensor (dimensions = 1/length/2)

conventions may vary!

Riemann tensor vanishes iff the spacetime is flat

Riemann tensor = combinations of second
derivatives of the metric



Geodesic deviation

A and B follow two (slightly different) geodesics x%(7) x47) + ox%(7)

. . A © ® B
X*=-T Zy(x)x/"x”

X4+ 0x% = — 1" (x + ox)(X* + 61")(x" + 6x”)

D?*6x“ O v sy
Do = R%,,, X' X" ox

The world lines are not parallel in a curved spacetime:
non-local effect

Tidal forces: the trajectories of neighboring particles
diverge




Curvature, Riccl tensor and Ricci scalar

Ricci tensor R;, =R @ (is symmetric) conventions may vary!

Y pay
Ricci scalar R = RO& Example: R=2/rA2 on a 2-sphere of radius r

n*(n*—1)
12

Riemann tensor is highly symmetric. In n dimensions it has
components.

independent

n=1: Riemann tensor has no independent components. No curvature!
n=2: Riemann tensor has 1 independent component, determined by the Ricci scalar

n=3: Riemann tensor has 6 independent components, same as Ricci tensor

n=4: Riemann tensor has 20 independent components, more than Ricci tensor

Bianchi identities Ropuvi + Ropryw + Ropriy = 0



Stress-energy tensor
dx”

cdr

4-velocity u® =

T% = (pc? + P)u®u’ + Pg®

equation of state P = P(p)
symmetry

Perfect fluid, comoving reference frame

energy-momentum

Energy density Energy flux conservation
(ﬂcz)@ 0 0

Taﬂ _ (P 0
() O P 0O
0 /10 O

Momentum density Momentum flux




Einstein equation

In Newtonian theory: g =— Vqﬁ where V2¢p = 42Gp
¢ — gaﬁ
In curved spacetime: = Taﬂ OP(gaﬂ) — Taﬂ

2 up to 2nd order
Ve — Op derivatives

Matter tells spacetime how to curve, and spacetime tells matter how to move




Einstein equation: gauge freedom

10 equations for 10 components of the metric?

Einstein equations covariant under coordinate transformation (4 equations)

10 equations = 6 evolution equations + 4 constraints from Bianchi identities

= 6 metric components + 4 gauge equations
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Schwarzschild solution

Assumptions: spherical symmetry, vacuum outside of the source

2GM

~1
) dr? + rdQ?

o by GM
Parameter M to ensure weak field limit: gy, =—1 — 2—2 with Py = — ——
C r
. . P M
r— 0 True singularity apys & =
2GM
r = = Ry Coordinate singularity




Schwarzschild solution

~1
2GM 2GM
ds® = — <1 )dt2+ (1— ) dr? + r?dQ?

rc rc2

o 4

|

From: Raphael Ferraro,
Introduction to Special \
and General Relativity ’ r




Tolman-Oppenheimer-Volkoff equations

Einstein equations inside a star with mass profile m and pressure profile P

ds? = — e22dr? + e dr? + r2dQ?

1
1 =2m(H)Ir

with the parametrization 62A

Einstein equations become:

dm(r)c?
dr

= 4rxrle

dP (e + P)(mc? + 47r°P)

dr r(r —2Gm(r)/c?) equation of state P = P(p)




Tolman-Oppenheimer-Volkofl equations: uniform density

Uniform density, pressure vanishes at radius R P(R) =0

| — (1 _ 2GMr2)1/2_ (1 _ 2GM)1/2

R3c? Rc?
P(r) = ¢ AN N
(1-%2) - (-5
Rc? R3c?
re |3 (1 @tP) For  GM/Rc® — 4/9
\ 87e, (eg + 3P,)?
9
3
( 1 — <1 _ 6M )1/2 Central pressure diverges
Rc?
P. = 60
‘ 112 P.— o
3(1-2) 7 -1 c
\ Cc
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Linearized theory

Solve Einstein’s equations assuming a 1 SnG
R, ——g,R= I,
small perturbation of the flat spacetime K 2K ct
g,ul/ — 77,W + h,uy with |h,uy| < 1

Linearized equation in Lorenz gauge




Wave equation

0? _

+V2 haﬂ=0

QOutside the source —

c201?

The perturbation travels with the speed of light

Plane wave solution o = Agpexplik,x’)

Lorenz gauge h Y=0—=A kK¥=0 orthogonal to
Hy Hy propagation vector

Any solution is a superposition of plane waves



How many degrees of freedom?

The metric perturbation can be decomposed into 4 scalars, 2 transverse vectors,

and a transverse trace-free tensor

Take wavevector in the z direction

hoo s a scalar under spatial rotations

1 d.o.f = scalar h =
Uy
_ h20 h21 h22 h23
hOi Is a 3-vector

3 d.o.f = divergence + transverse vector

hij contains trace + scalar ald]hlj + transverse vector + traceless transverse tensor

6 d.o.f = divergence + trace + transverse vector + TT tensor



Polarizations (most general case!)

The metric perturbation can be
decomposed into 4 scalars, 2 transverse
vectors, and a transverse trace-free

tensor

But only 2 scalar, 1 transverse vector
and the TT tensor are invariant to

coordinate transformations -> 6 d.o.f.

s s Ty Iy, B

0 0 0 0
0 hy+h, he b
"o =10 by hy—hy h,
0 h, h, B

Gravitational-Wave Polarization

C. Will, in Living Reviews in Relativity



Polarizatons in GR

In GR, out of the 6 remaining Einstein
equations, 4 are constraint equations

(no second-order time derivatives)

Only 2 equations are evolution

equations ->2 d.of. A, hy

00 0 O
0 h, h, O
=0 n, —h, 0
00 0 O

Gravitational-Wave Polarization




Plus polarization

00 0 0
0 h, 0 O

hat=zle) = A (o(r — z/0))
00 0 0

ds* = — c*dt* + dz* + (1 + hy cos[w(t — z/c)]) dx* + (1 — hy cos[w(t — z/c)]) dy*

- () OO0



Cross polarization

O 0 0 O
0 0 h, O

h,(t—zlc) = 0 h, 0 0 - COS (a)(t - Z/c))
O 0 0 O

ds’ = — c2dt* + dz* + dx* + dy* + 2 (1 + h,, cos[a(t — z/c)]) dxdy

(WO

Phaze O 2 s S o 2T
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GVW effect on test masses

Geodesic deviation: x*(7) x%(t) + 6x%(7)
D?*6x® A .
o = R“MW Xt x¥ ox" ¢ i
T

Take the curve parameters as the time coordinate:

D26y’ R st i 1 0°h;"
D2 = 00, X with R 00y = > o

. . 1 .
To linear order. x1(1) = 6x'(0) + <th (6) — b T(O)) 5x/(0)




Sources of GW

0° vy, 107G
c20t? T BT

Matter field is characterized by its multipole moments:

_ d3 G .
= | pd~Xx Mass monopole h o Mass conservation

Mass dipole h o G Linear momentum

px'x'd’x  Mass quadrupole GO

[ I’C3 conservation

4
\_ re ) Angular momentum

conservation

Jp ]kxjvkd3x Angular momentum (first moment of mass current) /1 7
rc



The quadrupole formula (TT gauge)

hTT(t X)) 2—QTT(t —r/c)

ctr

Compact binaries (binary black holes, neutron stars...)

RN
® ®
NP4

Non-spherical rotating stars

Stellar explosions




The quadrupole formula: binary system y

Equal-mass circular binary in the x-y plane,
orbital frequency (1) and initial separation d,, ' ‘
1 2
0., = ZMaO cos(2wr) O
— — —Ma? (2wt) X —@cos(a)t)
ny— 1 a;y cos(2w 1=

ap .
y = Y sin(wt)

|
O,y = ZMag sin(2wt)

2. .2
Radiation in the z direction }‘Z){XT _ _ }_lyTyT _ 2G1\4261()a) cosQa(t — r/c))
C*r
_ 2GMatw?
pIT = Y sinQRw(r — ric))
Xy 627‘

Circular polarization



The quadrupole formula: binary system y

Equal-mass circular binary in the x-y plane,
orbital frequency (1) and initial separation d,, ' ‘
1 2
0., = ZMaO cos(2wr) —>
— — —Ma? (2wt) X —@cos(a)t)
ny— 1 a;y cos(2w 1=

ap .
y = Y sin(wt)

|
O,y = ZMag sin(2wt)

o o _ _ GMazga)2
Radiation in the x direction it — _ pIT — cosRw(t — r/c))
) < 2¢2%r

Linear polarization aligned with the orbital plane



Binary system: unequal masses

Kepler law:

~ G(M, + M)

3
ay

0)2

GW frequency:

fGW =
/A

Orbital inclination: @

(M1M2)3/5

Chirpmass: M, =
(My + M)




GW energy flux and luminosity

- P 1 P 3G
uv — uv Eg,uv — o4 HY
Far from the source: the energy is due to GW
62
. : )
Weak field, developing to lowest order tW = 87Z'G — —;7/“/;7 PR/IP
Flux: \ /
3
d_EthT:_ ¢ <h2+h2>
didd 162G \ © second order in h
Luminosity:

dE B G <Q QU>
dtdA  SmcSr2 \ Y




Luminosity of GW (quadrupole approximation)

G

But — IS extremely small...
cd

GM

Assume a compact object — ~ 1

Rc?

Mass quadrupoles and its derivatives:

Ekin Ekin M Vz

Y

T - R/v R/v

O ~ MR? Q~M?*~E,

Thankfully IS extremely large!




Orbital evolution of a compact binary system

da 64 G>um?

Energy is lost to GW, the orbit shrinks: — =
dt 5 cda’

45(:51

Coalescence time for a circular binary

tcoal — aO . 756 G3 ,umz

MM,
M+ M,

Reduced mass 7

Total mass m =M, + M,



Cumulative period shift (s)

-10

I
[E—
(V)

1975

Hulse-Taylor pulsar

1980 1985 1990 1995 2000 2005

Year



GW150914: frequency chirp
| o 0 =] <GMC>_5/8 5 1
From orbital evolution: Jow(t) = T 3 256 (7, — f)

. GM 5/3
Frequency chirp: fow(®) = 9?6 PR < c> f11/3

o3 GW

N Ul
or =
S N

'

Frequency (Hz)
=
@) N
o

W
N

0.30 0.35 0.40 0.45
Time (s)

Abbott et al. (LVC) 2016



Compactbinary merger

h, () e
\/\/\/\/—\/\/\ | Nﬂ
‘ J\ u' u)l ¥ )
Inspiral Merger Ringdown
? / - —

— a0

S

< >



Beyond the quadrupole

© Quadrupole Jow =2 Jorbis
< Octupole 3 Jorbi
<o P ] . .
- Jorbit
| 1 + 5 solar mass black hole binary; 60 Hz to 733 Hz, inclination angle = 45 degrees (all curves)
.22 all harmonics at their natural strength
4.x 10 "=
3.x10%+
2.x 10°% =
1 %10 22_. only fundamental harmonic present (twice the orbital frequency)
() -
-1.% 10"%% =
99 ] fundamental harmonic unchanged; other harmonics enhanced by a factor of 3
-2.x 10" =
-3.% 102 =
-4.%x 10°% =
-5.%x 10°% =

ot
%

3.9 4 4.1 4.2
t(sec)

www.soundsofspacetime.org



Eccentric orbits

6. x 1022 = m1 = 1.4 solar masses,
m2 = 3 solar masses (all curves) e = 0 (circular), 2 f_orb = 250 Hz
4.x 1072 =
2 x ]0-22 - e = 0.5, no periastron precession, 2 f_orb = 150 Hz
h(1) 0=
-2 x ]0 2= e = 0.5, with periastron precession, 2 f_orb = 150 Hz
~4.% 10" =
-6.% 10727 =
l L . . . l . . . L ' . L . . l
0 0.05 0.10 0.15
t(sec)

www.soundsofspacetime.org



Spinning black holes

1M+ 3M,

o
o

8.x 107" = spin1 = 0.0, spin2 = 0.0, ending frequency = 1099 Hz binary black hole, 1 + 3 solar masses
" initial frequency = 60 Hz
6.% 1022 = spin/orbit aligned or anti-aligned
o (all curves)
4. x ]0~22 =4 spinl =+0.9, spin2 = +0.9, ending frequency = 3642 Hz
2.%10°% =
0 ] spinl = -0.9, spin2 = -0.9, ending frequency = 650 Hz
h(1) I
- -22 —
2.x10 spinl = +0.9, spin2 = -0.9,
- ending frequency = 650 Hz
-4.x 107" =
d spinl =-0.9, spin 2 = +0.9, ending frequency = 3642 Hz
-6.% 1022 =
-8.% 10722 =
1 . I . 1 e 1 b I . 1 . 1 . I . 1 . !
56 7 58 5.9 6.0 6.1 6.2 6.3 6.4 6.5

t(sec)

www.soundsofspacetime.org



0.5M + 5M,

h(t)

x 10" =

x 1072 =

Precessing binary black hole inspiral waveform, m1 = 0.5, m2 = 5 solar masses;
spinl = 0, spin2 = 0.99 (Kerr dimensionless spin parameter);

spin2 initially misaligned from initial orbital angular momentum by 60 degrees;
detector direction 140 degrees away from initial orbital angular momentum;
initial frequency is 2 f_orb = 40 Hz; ending frequency is 2 f_orb = 4282 Hz.

Precessing black holes

o

) -

www.soundsofspacetime.org



Precessing black holes

x 1021

o
Ll

Ly icts wasognpa 200500 0 1 5 3
time (s)



GW150914 : simulation of the signal

-0.76s

X

Credit: SXS




Overview of GW sources

b Supermassive Black Hole Binary Merger
"I

% -
5 : .
S| \ & Compact Binary Inspiral & Merger
@% 2 |
.= | Extreme Mass- Pulsars,
A Ratio Inspirals Fasee Supernovae
. |
age of the Wave Period
universe years hours seconds milliseconds

10°7° 10 102 1077 10 106 10+ 102 1 10°
Wave Fre&uency

Radio Pulsar Timing Arrays Space-based interferometers Terrestrial interferometers

he Gravitational Wave Spectrumn

Detectors




Gravitational-wave observatories
© LIGO (Hanford+Livingston, USA)

< Virgo (Italy)

~ Kagra (Japan)




Gravitational-wave observatories: interferometry

Animation created by T. Pyle, Caltech/MIT/LIGO Lab




End test

T | mass
-
X
i
Input test
Electro- MASSes
optic
25W  modulator - 100 kW
800W
n Beam
1064 nm Power Splitter
Recycling 85mW . End test
4ohiriz Mi);ror ) Signal mass
| Input | ' Recycling
X9 Mode I Mirror
Cleaner
QMHZ Output
oscillator " Mode
o5mW Cleaner

50/50 splitter

Credit: LIGO-Virgo Collaboration Photodetectors



Gravitational-wave observatories
© LIGO (Hanford+Livingston, USA)

< Virgo (Italy)

~ Kagra (Japan)

© Pulsar Timing Arrays (radio telescopes;

Europe+USA+Australia)

o LIGO-India

o Einstein Telescope (Europe) / Cosmic
Explorer (USA)

o LISA (space! ESA+NASA)




