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The equivalence principle

Weak equivalence principle (universality of free fall): 


• Inertial and gravitational masses are in identical ratio for all bodies


-> The trajectory of a point mass in a gravitational field depends only 

on its initial position and velocity, and is independent of its 

composition and structure

∑ ⃗F = miner ⃗a

⃗F g = mgrav ⃗g

Strong equivalence principle: 


• The outcome of any local experiment (gravitational or not) in a 

freely falling laboratory is independent of the velocity of the 

laboratory and its location in spacetime.



The metric in flat spacetime

ds2 = − c2dt2 + dx2 + dy2 + dz2

ds2 = ηαβdxαdxβ α = 0,1,2,3

ηαβ =

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

( − , + , + , + )Signature

Minkowski (flat) space-time

with

x

ct ds = 0

ds2 > 0

ds2 < 0

conventions may vary!

lightcone

Metric tensor ηαβ so that:



The metric: change of coordinates

xα(yμ)

dxα =
∂xα

∂yμ
dyμ

ds2 = gαβdyαdyβ

The metric is symmetric and non-singular

xμ yαCoordinate transformation from          (in which the metric is flat) to         using

ds2 = ηαβdxαdxβMinkowski metric

Curved metric

ds2 = dr2 + r2 (dθ2 + sin2 θdϕ2)

ds2 = dr2 + sin2 r (dθ2 + sin2 θdϕ2)

Examples (space only):

Flat space in curved coordinates:

Curved space:

gαβ =
∂xμ

∂yα

∂xν

∂yβ
ημνwith



Vectors, tensors and the dual space

Vα(y) =
∂yα

∂xμ
Vμ(x)

Vα(y) =
∂xμ

∂yα
Vμ(x)

gαβ

gαβ gαβgαβ = δ β
α

Metric

Inverse metric so as:

Vector transformation under coordinate change

Vector in the dual space transformation

Vα = gαμVμIndex raising and lowering using the metric tensor

Tensor transformation T βγ
α (y) =

∂xμ

∂yα

∂yβ

∂xν

∂yγ

∂xσ
T νσ

μ (x)



The geodesic equation

··xμ + Γμ
αβ

·xα ·xβ = 0 λ1

λ2

Γμ
αβ =

1
2

gμκ (gακ,β + gβκ,α − gαβ,κ)

xα(λ)

Christoffel symbols:

gαβ,γ =
∂gαβ

∂xγ
Christoffel symbols depend on the metric and its first derivatives

In flat space-time all metric derivatives vanish: Γμ
αβ = 0 → ··xμ = 0

n (=number of dimensions) 2nd order non-linear diff. eqs.

dℓ = gαβ
·xα ·xβdλFind the "shortest" path in spacetime



Covariant derivative

λ1

λ2Vα(λ)Vector (or tensor) derivatives along the curve

DVμ

Dλ
=

dVμ

dλ
+ Γμ

αβVα dxβ

dλ

For example: the affine parameter is the proper time of the particle τ

The acceleration:

Duμ

Dλ
=

duμ

dτ
+ Γμ

αβuα dxβ

dτ
=

d2xμ

dτ2
+ Γμ

αβ
dxα

dτ
dxβ

dτ
=

fμ

m

If not external forces are present the particle moves along a geodesic



The equivalence principle and local flatness

Strong equivalence principle: 


• The outcome of any local experiment (gravitational or not) in a 

freely falling laboratory is independent of the velocity of the 

laboratory and its location in spacetime.

Assume a general (curved) space-time, described by the metric

At any point P we can find coordinates           such that the metric is locally flat in these 

coordinates, and its first derivatives vanish locally

gαβ(x)

y

g′�αβ(y = P) = gμν
∂xμ

∂yα

∂xν

∂yβ
(y = P) = ηαβ

∂g′�αβ

∂yγ
(y = P) = 0

Carroll, gr-qc/9712019



The equivalence principle and local flatness (contd.)

How to express any physical law in a curved spacetime:

1. Make a coordinate transformation to a locally flat (free falling) system


2. Write down your law in the locally flat system (use covariant form)


3. Transform back to the original coordinate system



Parallel transport along a curve

Vα(λ)Does a vector, translated parallel to 
itself along a curve, returns to itself?

ΔVα = Rα
βμνV

μdxμdxν

Rα
βμν = Γα

βν,μ − Γα
βμ,ν + Γα

σμΓσ
βν − Γα

σνΓσ
βμ

Riemann tensor (dimensions = 1/length^2)

conventions may vary!

Riemann tensor vanishes iff the spacetime is flat

Riemann tensor = combinations of second 
derivatives of the metric



Geodesic deviation

A B

xα(τ) xα(τ) + δxα(τ)A and B follow two (slightly different) geodesics

··xα = − Γα
μν(x) ·xμ ·xν

··xα + δ··xα = − Γα
μν(x + δx)( ·xμ + δ ·xμ)( ·xν + δ ·xν)

D2δxα

Dτ2
= Rα

μνγ
·xμ ·xν δxγ

The world lines are not parallel in a curved spacetime: 
non-local effect

Tidal forces: the trajectories of neighboring particles 
diverge



Curvature, Ricci tensor and Ricci scalar

Rβγ = Rα
βαγRicci tensor

Ricci scalar R = Rα
α

conventions may vary!

Riemann tensor is highly symmetric. In n dimensions it has                       independent 
components.

n2(n2 − 1)
12

(is symmetric)

n=1: Riemann tensor has no independent components. No curvature!

n=2: Riemann tensor has 1 independent component, determined by the Ricci scalar

n=3: Riemann tensor has 6 independent components, same as Ricci tensor

n=4: Riemann tensor has 20 independent components, more than Ricci tensor

Example: R=2/r^2 on a 2-sphere of radius r

Rαβμν;λ + Rαβλμ;ν + Rαβνλ;μ = 0Bianchi identities



Stress-energy tensor

Tαβ = (ρc2 + P)uαuβ + Pgαβ

4-velocity uα =
dxα

cdτ

Tαβ =

ρc2 0 0 0
0 P 0 0
0 0 P 0
0 0 0 P

Perfect fluid, comoving reference frame

P = P(ρ)equation of state
Tαβ = Tβα

DTαβ

Dxβ
= 0

symmetry

energy-momentum 
conservationEnergy density Energy flux

Momentum fluxMomentum density



Einstein equation

Rμν −
1
2

gμνR =
8πG
c4

Tμν

⃗g = − ⃗∇ ϕ ∇2ϕ = 4πGρ

Matter tells spacetime how to curve, and spacetime tells matter how to move

In Newtonian theory:

In curved spacetime:

ϕ → gαβ

where

ρ → Tαβ

∇2 → Op up to 2nd order 
derivatives

Op(gαβ) = Tαβ



Einstein equation: gauge freedom

Gμν = Rμν −
1
2

gμνR =
8πG
c4

Tμν

10 equations for 10 components of the metric?

10 equations = 6 evolution equations + 4 constraints from Bianchi identities


= 6 metric components + 4 gauge equations

Einstein equations covariant under coordinate transformation (4 equations)
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Schwarzschild solution

ds2 = − (1 −
2GM
rc2 ) dt2 + (1 −

2GM
rc2 )

−1

dr2 + r2dΩ2

Assumptions: spherical symmetry, vacuum outside of the source

r → 0

r =
2GM

c2
≡ RS

True singularity

Coordinate singularity

Parameter M to ensure weak field limit: g00 = − 1 − 2
ϕN

c2
with ϕN = −

GM
r

Rαβγδ ∝
M
r3



Schwarzschild solution

ds2 = − (1 −
2GM
rc2 ) dt2 + (1 −

2GM
rc2 )

−1

dr2 + r2dΩ2

From: Raphael Ferraro, 
Introduction to Special 
and General Relativity



Tolman-Oppenheimer-Volkoff equations

dm(r)c2

dr
= 4πr2e

dP
dr

= −
(e + P)(mc2 + 4πr3P)

r(r − 2Gm(r)/c2)

Einstein equations inside a star with mass profile m and pressure profile P

ds2 = − e2Φdt2 + e2Λdr2 + r2dΩ2

e2Λ =
1

1 − 2m(r)/r
with the parametrization

Einstein equations become:

P = P(ρ)equation of state



Tolman-Oppenheimer-Volkoff equations: uniform density

Pc = e0

1 − (1 − 2GM
Rc2 )

1/2

3 (1 − 2GM
Rc2 )

1/2
− 1

R =
3

8πe0 (1 −
(e0 + Pc)2

(e0 + 3Pc)2 ) GM/Rc2 → 4/9

Pc → ∞

R <
9
8

RS

Uniform density, pressure vanishes at radius R P(R) = 0

P(r) = e0

1 − (1 − 2GMr2

R3c2 )
1/2

− (1 − 2GM
Rc2 )

1/2

3 (1 − 2GM
Rc2 )

1/2
− (1 − 2GMr2

R3c2 )
1/2

For

Central pressure diverges
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gμν = ημν + hμν |hμν | ≪ 1

Linearized theory

Rμν −
1
2

gμνR =
8πG
c4

Tμν
Solve Einstein’s equations assuming a 

small perturbation of the flat spacetime

with

(−
∂2

c2∂t2
+ ∇2) h̄αβ = −

16πG
c4

Tαβ

Linearized equation in Lorenz gauge



Wave equation

(−
∂2

c2∂t2
+ ∇2) h̄αβ = 0Outside the source

The perturbation travels with the speed of light

h̄αβ = Aαβ exp(ikγxγ)Plane wave solution

Lorenz gauge h̄ ,ν
μν = 0 → Aμνkν = 0

Any solution is a superposition of plane waves

orthogonal to 
propagation vector



How many degrees of freedom?

The metric perturbation can be decomposed into 4 scalars, 2 transverse vectors, 

and a transverse trace-free tensor

h00 is a scalar under spatial rotations

h0i is a 3-vector 

⃗h 0i = ⃗∇ Φ + ⃗∇ × ⃗V

1 d.o.f = scalar

hij

3 d.o.f = divergence + transverse vector

6 d.o.f = divergence + trace + transverse vector + TT tensor

contains trace + scalar ∂i∂ jhij + transverse vector  + traceless transverse tensor

Take wavevector in the z direction

hμν =

h00 h01 h02 h03

h10 h11 h12 h13

h20 h21 h22 h23

h30 h31 h32 h33



Polarizations (most general case!)

The metric perturbation can be 

decomposed into 4 scalars, 2 transverse 

vectors, and a transverse trace-free 

tensor

But only 2 scalar, 1 transverse vector 

and the TT tensor are invariant to 

coordinate transformations -> 6 d.o.f.

hμν =

0 0 0 0
0 hb + h+ h× hx

0 h× hb − h+ hy

0 hx hy hl

h+, h×, hb, hl, hx, hy

C. Will, in Living Reviews in Relativity 



Polarizations in GR

In GR, out of the 6 remaining Einstein 

equations, 4 are constraint equations 

(no second-order time derivatives)

Only 2 equations are evolution 

equations -> 2 d.o.f.

hμν =

0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

h+, h×



Plus polarization

hμν(t − z /c) =

0 0 0 0
0 h+ 0 0
0 0 −h+ 0
0 0 0 0

⋅ cos (ω(t − z /c))

ds2 = − c2dt2 + dz2 + (1 + h+ cos[ω(t − z /c)]) dx2 + (1 − h+ cos[ω(t − z /c)]) dy2



Cross polarization

hμν(t − z /c) =

0 0 0 0
0 0 h× 0
0 h× 0 0
0 0 0 0

⋅ cos (ω(t − z /c))

ds2 = − c2dt2 + dz2 + dx2 + dy2 + 2 (1 + h× cos[ω(t − z /c)]) dxdy







GW effect on test masses

A B

xα(τ) xα(τ) + δxα(τ)
D2δxα

Dτ2
= Rα

μνγ
·xμ ·xν δxγ

D2δxi

Dt2
= Ri

00γ δxγ

Geodesic deviation:

Take the curve parameters as the time coordinate:

Ri
00γ =

1
2

∂2hTT
ij

∂t2
with

To linear order:

Δx
x

≃ h

δxi(t) = δxi(0) +
1
2 (hTT

ij (t) − hTT
ij (0)) δxj(0)



Sources of GW

Matter field is characterized by its multipole moments:

(−
∂2

c2∂t2
+ ∇2) h̄αβ = −

16πG
c4

Tαβ

M = ∫ ρd3x

Di = ∫ ρxid3x

Qij = ∫ ρxixjd3x

Li = ∫ ρei
jkxjvkd3x

Mass monopole

Mass dipole

Mass quadrupole

Angular momentum (first moment of mass current)

h ∝
GM
rc2

h ∝
G ·D
rc3

h ∝
G ·L
rc4

h ∝
G ··Q
rc4

Mass conservation

Linear momentum 

conservation

Angular momentum 

conservation



The quadrupole formula (TT gauge)

h̄TT
ij (t, ⃗x ) ≃

2G
c4r

··QTT(t − r/c)

Compact binaries (binary black holes, neutron stars…)

Non-spherical rotating stars

Stellar explosions



The quadrupole formula: binary system
Equal-mass circular binary in the x-y plane, 

orbital frequency          and initial separation

Qxx =
1
4

Ma2
0 cos(2ωt)

a0

Qyy = −
1
4

Ma2
0 cos(2ωt)

Qxy =
1
4

Ma2
0 sin(2ωt)

ω

x1 =
a0

2
cos(ωt)

y1 =
a0

2
sin(ωt)

Radiation in the z direction

x

y

h̄TT
xx = − h̄TT

yy = −
2GMa2

0ω2

c2r
cos(2ω(t − r/c))

h̄TT
xy =

2GMa2
0ω2

c2r
sin(2ω(t − r/c))

Circular polarization



The quadrupole formula: binary system
Equal-mass circular binary in the x-y plane, 

orbital frequency          and initial separation

Qxx =
1
4

Ma2
0 cos(2ωt)

a0

Qyy = −
1
4

Ma2
0 cos(2ωt)

Qxy =
1
4

Ma2
0 sin(2ωt)

ω

x1 =
a0

2
cos(ωt)

y1 =
a0

2
sin(ωt)

Radiation in the x direction

x

y

h̄TT
yy = − h̄TT

zz =
GMa2

0ω2

2c2r
cos(2ω(t − r/c))

Linear polarization aligned with the orbital plane



Binary system: unequal masses

h+ =
4
r ( GMc

c2 )
5/3

( πfGW

c )
2/3 1 + cos2 θ

2

h× =
4
r ( GMc

c2 )
5/3

( πfGW

c )
2/3

cos θ

Mc =
(M1M2)3/5

(M1 + M2)1/5
Chirp mass:

ω2 =
G(M1 + M2)

a3
0

Kepler law:

fGW =
ω
π

GW frequency:

Orbital inclination: θ

θ



GW energy flux and luminosity

Far from the source: the energy is due to GW

Gμν = Rμν −
1
2

gμνR =
8πG
c4

Tμν

tTT
μν =

c2

8πG (Rμν −
1
2

ημνηδρRλρ)Weak field, developing to lowest order

second order in h
dE

dtdA
= tTT

03 = −
c3

16πG ⟨ ·h2
+ + ·h2

×⟩

dE
dtdA

= −
G

8πc5r2 ⟨ ···Qij
···Qij⟩ LGW = −

dE
dt

=
G

5c5 ⟨ ···Qij
···Qij⟩

Flux:

Luminosity:



Luminosity of GW (quadrupole approximation)

LGW = −
dE
dt

=
G

5c5 ⟨ ···Qij
···Qij⟩

Assume a compact object
GM
Rc2

∼ 1

G
c5

is extremely small…

Q ∼ MR2 ··Q ∼ Mv2 ∼ Ekin
···Q ∼

Ekin

τ
∼

Ekin

R/v
∼

Mv2

R/v

But

Mass quadrupoles and its derivatives:

LGW ∼
G
c5

···Q2 ∼
c5

G ( GM
Rc2 )

2

( v
c )

6

c5

G
is extremely large!Thankfully



Orbital evolution of a compact binary system

da
dt

= −
64
5

G3μm2

c5a3

tcoal = a4
0 ⋅

5
256

c5

G3

1
μm2

Coalescence time for a circular binary

Reduced mass μ =
M1M2

M1 + M2

Total mass m = M1 + M2

Energy is lost to GW, the orbit shrinks:



Hulse-Taylor pulsar



GW150914: frequency chirp

Abbott et al. (LVC) 2016

·fGW(t) =
96
5

π8/3 ( GMc

c3 )
5/3

f11/3
GW

From orbital evolution:

Frequency chirp:

fGW(t) =
1
π ( GMc

c3 )
−5/8

( 5
256

1
(τcoal − t) )



Compact binary merger



Quadrupole


Octupole


…

fGW = 2 ⋅ forbit

3 ⋅ forbit

n ⋅ forbit

www.soundsofspacetime.org

Beyond the quadrupole



www.soundsofspacetime.org

Eccentric orbits 



M1

M2

www.soundsofspacetime.org

1M⊙ + 3M⊙

Spinning black holes



www.soundsofspacetime.org

0.5M⊙ + 5M⊙

Precessing black holes



Precessing black holes



GW150914 : simulation of the signal

Credit: SXS



Overview of GW sources



Gravitational-wave observatories Virgo (Pisa, Italy)

LIGO (Hanford+Livingston, USA)


Virgo (Italy)


Kagra (Japan)

LIGO (Livingston, USA)



Animation created by T. Pyle, Caltech/MIT/LIGO Lab

Gravitational-wave observatories: interferometry



Credit: LIGO-Virgo Collaboration



Gravitational-wave observatories
LIGO (Hanford+Livingston, USA)


Virgo (Italy)


Kagra (Japan)

Pulsar Timing Arrays (radio telescopes; 

Europe+USA+Australia)


LIGO-India 

Einstein Telescope (Europe) / Cosmic 

Explorer (USA) 

LISA (space! ESA+NASA)

LIGO (Livingston, USA)

Virgo (Pisa, Italy)


