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Contents
Structure of this presentation:

• Why study accretion?
Observational motivation

• Theory of thin accretion disks
. . . too much math

• Confrontation with observation
some examples, see remainder of the school for the gory details

• Spherical accretion in X-ray binaries
. . . if there is time

• Outlook



The visual Sky

ESA/Gaia/DPAC



The first eROSITA All Sky Survey



• 1.1 M sources
• >5k galaxy clusters



eROSITA and the Fermi bubbles

Predehl et al., 2020, Nature 588, 227 blue: X-rays (0.3–2.3 keV), red: γ-rays (20 MeV–300 GeV)

LX ∼ 1 × 1039 erg s−1 ∼ 25 × 106 L⊙
need 1041 erg s−1 for a few Myr (Star Burst or Activity in Sgr A∗)



How to make X-rays
Astrophysical energy sources:

1. Nuclear fusion (stars)
Reactions à la

4p −→ 4He + ∆Enuc

Energy released:

Fusion produces ∼6 × 1011 J g−1

(i.e., ∆Enuc ∼ 0.007mpc
2)
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How to make X-rays
Astrophysical energy sources:

1. Nuclear fusion (stars)
Reactions à la

4p −→ 4He + ∆Enuc

Energy released:

Fusion produces ∼6 × 1011 J g−1

(i.e., ∆Enuc ∼ 0.007mpc
2)

2. Gravitation (X-ray astro)
Accretion of mass m from ∞ to RS on black hole with
mass M gives

∆Eacc =
GMm

RS
where RS =

2GM

c2

Accretion produces ∼1013 J g−1

(i.e., ∆Eacc ∼ 0.1mpc
2)

=⇒Accretion of material is the most efficient astrophysical energy source.
. . . thus accreting objects are the most luminous in the whole universe, and crucial for its evolution.

Note: energy gets radiated away from outside the Schwarzschild radius!



X-ray Binary: Material flows from normal star via inner
Lagrange point onto Black Hole
=⇒ Formation of an accretion disk.

Luminosity:

L = ηṀc2 !
= 2 · 4πR2σSBT

4

=⇒ T =

(
ηṀc6

32πG2M2σSB

)1/4

∼ 107 K

=⇒ kT ∼ 4 keV

=⇒ X-rays and Gamma-rays
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Ṁ

Assume mass M spherically
symmetrically accreting
ionized hydrogen gas, rate:
Ṁ.
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Eddington luminosity

M
Ṁ

S

Assume mass M spherically
symmetrically accreting
ionized hydrogen gas, rate:
Ṁ.
At radius r, accretion
produces energy flux S.
Important: Interaction
between accreted material
and radiation!
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Eddington luminosity

e−p

Frad

Fg

Force balance on accreted electrons and protons: In-
ward force: gravitation:

Fg =
GMmp

r2

Outward force: radiation force:

Frad =
σTS

c

where energy flux S is given by

S =
L

4πr2

where L: luminosity.
Note: σT ∝ (me/mp)

2, so negligible for protons.
But: strong Coulomb coupling between electrons and
protons =⇒ Frad also has effect on protons!



Eddington luminosity

e−p

Frad

Fg

Accretion is only possible if gravitation dominates:
GMmp

r2 >
σTS

c
=

σT

c
· L

4πr2

and therefore

L < LEdd =
4πGMmpc

σT

or, in astronomically meaningful units

L < 1.3 × 1038 erg s−1 · M

M⊙

where LEdd is called the Eddington luminosity.

But remember the assumptions entering the derivation: spherically sym-
metric accretion of fully ionized pure hydrogen gas.



Eddington luminosity
Characterize accretion process through the accretion efficiency, η:

L = η · Ṁc2

where Ṁ: mass accretion rate (e.g., g s−1 or M⊙ yr−1).

Therefore maximum accretion rate (“Eddington rate”):

ṁ =
LEdd

ηc2 ∼ 2 × 10−8 ·
(

M

1M⊙

)
M⊙ yr−1

(for η = 0.1)
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LX,XRB = 0.1Ṁc2 = 5.7 × 1037 erg s ∼ 104 L⊙
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assuming ⟨EX⟩ = 1 keV = 1.06 × 10−9 erg; in reality count rates are lower due to spectral shape



Eddington luminosity
Typical mass accretion rate for a black hole in an Active Galactic Nucleus:

Ṁ = 0.1M⊙ yr−1

Therefore:

LAGN ∼ 1044 erg s−1 ∼ 1010 L⊙

about the same as a whole galaxy

=⇒ for nearby AGN at d = 1 Mpc, 10% in X-rays:

Nph,X,AGN =
1

⟨EX⟩
· 0.1 · LAGN

4πd2 ∼ 80 ph cm−2 s−1

assuming ⟨EX⟩ = 1 keV = 1.06 × 10−9 erg; in reality count rates are lower due to spectral shape.



Eddington luminosity
Typical mass accretion rate for a black hole in an Active Galactic Nucleus:

Ṁ = 0.1M⊙ yr−1

Therefore:

LAGN ∼ 1044 erg s−1 ∼ 1010 L⊙

about the same as a whole galaxy

=⇒ for nearby AGN at d = 1 Mpc, 10% in X-rays:

Nph,X,AGN =
1

⟨EX⟩
· 0.1 · LAGN

4πd2 ∼ 80 ph cm−2 s−1

assuming ⟨EX⟩ = 1 keV = 1.06 × 10−9 erg; in reality count rates are lower due to spectral shape.

Accreting objects are luminous – X-ray and gamma-ray astronomy necessary to understand this physical
process



Literature

• J. Frank, A. King, D. Raine, 2002, Accretion Power in Astrophysics, 3rd edition, Cambridge Univ. Press
The standard textbook on accretion, covering all relevant areas of the field. Buy it.

• T. Padmanabhan, 2001, Theoretical Astrophysics, II. Stars and Stellar Systems, Cambridge Univ. Press
The Landau & Lifshitz of Theoretical Astrophysics. Buy it.

• J.E. Pringle, 1981, Accretion Disks in Astrophysics, Ann. Rev. Astron. Astrophys. 19, 137
Concise review of classical accretion disk theory.

• N.I. Shakura & R. Sunyaev, 1973, Black Holes in Binary Systems. Observational Appearance. Astron. Astro-
phys. 24, 337 and
J.E. Pringle & M. Rees, 1972, Accretion Disc Models for Compact X-Ray Sources, Astron. Astrophys., 22(1), 1
The fundamental papers, which really started the field.



Roche Geometry

M. Hanke

Motion of gas in corotating frame around masses M1, M2 given by

d2r
dt2 + 2ω× dr

dt
= −

1
ρ
∇P −∇ΦR

where the Roche potential:

ΦR(r) = −
GM1

|r − r1|
−

GM2

|r − r2|
−

1
2
(ω× r)2

and where

ω =

(
GM

a3

)1/2

ê



Matter comes from companion star
=⇒ accreted matter has angular momentum
=⇒ accretion disk forms.



Roche Lobe Overflow

incident
stream

returning

stream

(after Lubow & Shu, 1975, Fig. 4)
Roche Lobe Accretion: Gas is transferred at inner Lagrange point.



Roche Lobe Overflow

incident
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(after Lubow & Shu, 1975, Fig. 4)
Roche Lobe Accretion: Gas is transferred at inner Lagrange point.
Ballistic free fall towards compact object, forms elliptical orbit
Note: ellipse rotates because of Coriolis force!

Stream intersects =⇒ shock =⇒ randomization =⇒ circular orbit forms.



Roche Lobe Overflow

incident

stream

shockwave

(after Lubow & Shu, 1975, Fig. 4)
Roche Lobe Accretion: Gas is transferred at inner Lagrange point.
Ballistic free fall towards compact object, forms elliptical orbit
Note: ellipse rotates because of Coriolis force!

Stream intersects =⇒ shock =⇒ randomization =⇒ circular orbit forms.
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Owen & Blondin



Thin Disks: Vertical Structure
z

M
H

R

Most important case: L ≪ LEdd

=⇒ Radiation pressure negligable
=⇒ Horizontal structure supported only by gas pressure
=⇒ thin accretion disks, i.e., vertical thickness, H, ≪ radius R:

H ≪ R



Thin Disks: Vertical Structure
z

M
H

R

Gravitational acceleration in z-direction:
az,grav =

GM

R2

z

R
often called “force per unit mass”. . .



Thin Disks: Vertical Structure
z

M
H

R

Gravitational acceleration in z-direction:
az,grav =

GM

R2

z

R
∝ z

vertical density profile
n(z) ∝ exp

(
−
z

H

)
where H: scale height
exact value depends on details of accretion disk theory
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Thin Disks: Vertical Structure
z

M
H

R

Gas pressure must support disk vertically against gravitation
Gravitational acceleration in z-direction:

az,grav =
GM

R2

z

R
∼
GM

R2

H

R

Acceleration due to gas pressure:

az,gas =
1
ρ

∣∣∣∣∂P∂z
∣∣∣∣ ∼ 1

H

Pc

ρc
since

∂P

∂z
∼
Pc

H

Pc: characteristic pressure, ρc: characteristic density
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Thin Disks: Vertical Structure
z

M
H
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For vertically stationary disk need:
az,grav = az,gas

or
GM

RR

H

R
∼

Pc

ρcH

Kepler speed: v2
ϕ = GM/R = 1.2 × 1010 (M/M⊙)(R/106 cm)−1 cm s−1

Speed of sound: c2
s = P/ρ



Thin Disks: Vertical Structure
z

M
H

R

For vertically stationary disk need:
az,grav = az,gas

or
v2
ϕ

R

H

R
∼
c2

s

H
=⇒ c2

s = v2
ϕ · H

2

R2

Kepler speed: v2
ϕ = GM/R = 1.2 × 1010 (M/M⊙)(R/106 cm)−1 cm s−1

Speed of sound: c2
s = P/ρ



Thin Disks: Vertical Structure
z

M
H

R

For vertically stationary disk need:
az,grav = az,gas

or

c2
s = v2

ϕ · H
2

R2 =⇒ cs ≪ vϕ since H ≪ R

Thin accretion disks are highly supersonic.

Equation above also implies H = csR/vϕ, and since cs ∝ T1/2: disk must be cold!



Thin Disks: Radial Structure

Radial acceleration due to pressure:

1
ρ

∂P

∂R
∼

Pc

ρcR
∼
c2

s

R
∼
v2
ϕ

R

H2

R2 =
GM

R2

H2

R2 ≪ GM

R2

analoguous reasoning to vertical structure

=⇒ radial acceleration due to pressure is negligable
compared to gravitational acceleration

=⇒ (almost) no radial motion

Thin disk: fluid motion is Keplerian to very high degree of precision.

=⇒ for the radial velocity, vR: vR ≪ vϕ



STScI

A disk with (almost not) radial flow



Thin Disks: Angular Momentum Transport
Although vR ≪ vϕ, there is some radial flow.
Problem: Angular Momentum Conservation
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Thin Disks: Angular Momentum Transport
Although vR ≪ vϕ, there is some radial flow.
Problem: Angular Momentum Conservation
Angular velocity in Keplerian disk:

ω(R) =
vR

R
=

√
GM

R

1
R
=

(
GM

R3

)1/2

=⇒ “differential rotation”
Angular momentum of a matter ring:

L(R) = R×M(R)vϕ = M(R)R× RωR

Do not confuse angular momentum with luminosity!

=⇒ specific angular momentum (angular momentum per mass):

L =
L

M
= R · Rω(R) = R2 ω(R) ∝ R1/2

=⇒decreases with decreasing R!
Total angular momentum lost when mass moves in unit time from R+ dR to R:

d2L

dRdt
= Ṁ · d(R

2ω(R))

dR

reminder: Ṁ =mass accretion rate



Viscosity
Since L = L(R) decreases w/R: accreting matter needs to lose angular momentum.
This is done by viscous forces excerting torques:
Reminder: viscosity

boundary plate (2D, stationary)

velocity, u

fluid

y dimension

boundary plate
 (2D, moving)

gradient,

Viscous force (Newton’s law of viscosity):

F

A
= µ

∂v

∂y

where µ: coefficient of dynamic viscosity (sometimes called shear viscosity).
Often, use kinematic viscosity, i.e.,

ν = µ/ρ

where ρ: density of fluid.
units: ν = λu where λ: typical length, u: typical velocity

Viscous force between two accretion disk rings:

dFvisc = 2πRdzνρR
dω

dR
=⇒ integrating over z =⇒ Fvisc = 2πνΣR2dω

dR

where Σ is the surface density of the disk, i.e.,
Ṁ = −2πR · Σ · vR

Do not confuse vR and ν!



Viscosity
Since L = L(R) decreases w/R: accreting matter needs to lose angular momentum.
This is done by viscous forces excerting torques:
Reminder: viscosity

boundary plate (2D, stationary)

velocity, u

fluid

y dimension

boundary plate
 (2D, moving)

gradient,

Viscous force (Newton’s law of viscosity):

F

A
= µ

∂v

∂y

where µ: coefficient of dynamic viscosity (sometimes called shear viscosity).
Often, use kinematic viscosity, i.e.,

ν = µ/ρ

where ρ: density of fluid.
units: ν = λu where λ: typical length, u: typical velocity

Total torque

G(R) = F · R = νΣ2πR3dω

dR
and the net torque acting on a ring in disk is

∂G

∂R
dR

=⇒This net torque needs to balance change in specific angular momentum in disk.
Work done leads to energy release (“viscous dissipation rate”): ∝ F∆v



Viscosity
Balancing net torque and angular momentum loss gives:

Ṁ
d(R2ω)

dR
= −

d

dR

(
νΣ2πR3dω

dR

)
Insert ω(R) = (GM/R3)1/2 and integrate:

νΣR1/2 =
Ṁ

3π
R1/2 + const.

where const. obtained from no torque boundary condition at inner edge of disk at R = R∗: dG/dR(R∗) = 0, such
that

νΣ =
Ṁ

3π

[
1 −

(
R∗
R

)1/2
]

Therefore the viscous dissipation rate per unit area is

D(R) = νΣ

(
R
dω

dR

)2

=
3GMṀ

4πR3

[
1 −

(
R∗
R

)1/2
]

(1)



Thin Disks: Temperature Profile
The viscous dissipation rate was

D(R) = νΣ

(
R
dω

dR

)2

=
3GMṀ

4πR3

[
1 −

(
R∗
R

)1/2
]

(1)

If disk is optically thick: Thermalization of dissipated energy
=⇒ Temperature from Stefan-Boltzmann-Law:

2σSBT
4 = D(R)

(disk has two sides!) and therefore

T(R) =

{
3GMṀ

8πR3σSB

[
1 −

(
R∗
R

)1/2
]}1/4



Thin Disks: Temperature Profile
The viscous dissipation rate was

D(R) = νΣ

(
R
dω

dR

)2

=
3GMṀ

4πR3

[
1 −

(
R∗
R

)1/2
]

(1)

If disk is optically thick: Thermalization of dissipated energy
=⇒ Temperature from Stefan-Boltzmann-Law:

2σSBT
4 = D(R)

(disk has two sides!) and therefore

T(R) =

{
3GMṀ

8πR3σSB

[
1 −

(
R∗
R

)1/2
]}1/4

Inserting astrophysically meaningful numbers:

T(R) =

{
3GMṀ

8πR3σSB

[
1 −

(
R∗
R

)1/2
]}1/4

= 6.8 × 105 K · η−1/4
(

L

LEdd

)1/2

L
−1/4
46 R1/4x−3/4

where η = LEdd/ṀEddc
2, x = c2R/2GM, R = (1 − (R∗/R)1/2).
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Thin Disks: Temperature Profile
The viscous dissipation rate was

D(R) = νΣ

(
R
dω

dR

)2

=
3GMṀ

4πR3

[
1 −

(
R∗
R

)1/2
]

(1)

If disk is optically thick: Thermalization of dissipated energy
=⇒ Temperature from Stefan-Boltzmann-Law:

2σSBT
4 = D(R)

(disk has two sides!) and therefore

T(R) =

{
3GMṀ

8πR3σSB

[
1 −

(
R∗
R

)1/2
]}1/4

Radial dependence of T :

T(R) ∝ R−3/4

Dependence on mass (note: for NS/BH inner radius R∗ ∝ M!):

inner disk temperature Tin ∝ (Ṁ/M2)1/4



Emitted Spectrum
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If disk is optically thick, then locally emitted spectrum is black body.
Total emitted spectrum obtained by integrating over disk

Fν =

∫Rout
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B(T(R)) 2πRdR



Emitted Spectrum
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If disk is optically thick, then locally emitted spectrum is black body.
Total emitted spectrum obtained by integrating over disk

Fν =

∫Rout

R∗

B(T(R)) 2πRdR

Resulting spectrum looks essentially like a stretched black body.



Emitted Spectrum
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Spectra for same Eddington rate

If disk is optically thick, then locally emitted spectrum is black body.
Total emitted spectrum obtained by integrating over disk

Fν =

∫Rout

R∗

B(T(R)) 2πRdR

Peak moves to lower energies for higher mass.



Emitted Spectrum

local BB

metals

H+He

Hubeny et al., 2001, Fig. 13

In reality: accretion disk spectrum depends
on
• elemental composition (“metallicity”)
• viscosity (“α-parameter”)
• ionization state and luminosity of disk

(Ṁ)
• properties of compact object

and many further parameters

Until today: no really satisfactory disk model
available.
this is even true for cataclysmic variables or young
stars



Emitted Spectrum

Fe XVII − Fe XXIII

Fe XXV
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Fe species in a disk around a Galactic BH (Davis et al., 2005, Fig. 6)



Viscosity
Most important unknown in accretion disk theory: viscosity
even though it dropped out of T(R)!

Earth: viscosity of fluids typically due to molecular interactions (molecular viscosity).
Kinematic viscosity:

νmol ∼ λmfpcs

where the mean free path

λmfp ∼
1
nσ

∼ 6.4 × 104
(
T2

n

)
cm

and the speed of sound
cs ∼ 104T1/2 cm s−1

such that
νmol ∼ 6.4 × 108 T5/2n−1 cm2 s−1



Viscosity
Viscosity important when Reynolds number small (“laminar flow”), where

Re =
inertial force
viscous force

∼
ρRv

ρν
=

Rv

ν

Follows from Navier-Stokes Equations

Using typical accretion disk parameters:

Remol ∼ 2 × 1014
(

M

M⊙

)1/2(
R

1010 cm

)1/2 ( n

1015 cm−3

)( T

104 K

)−5/2

=⇒ Molecular viscosity is irrelevant for astrophysical disks!

since Re ≳ 103: turbulence =⇒ Shakura & Sunyaev: turbulent viscosity

νturb ∼ vturbℓturb ∼ αcs ·H
where α ≲ 1 and ℓturb ≲ H typical size for turbulent eddies.
This is a recipe, no physics! Also, does not say that α = const.!



Viscosity

R. Müller
Mechanical analogy of MRI: spring in differentially rotating
medium.

Physics of turbulent viscosity is unknown, however, α
prescription yields good agreement between theory and
observations.

Possible origin: Magnetorotational instability (MRI):
MHD instability amplifying B-field inhomogeneities
caused by small initial radial displacements in accretion
disk
=⇒ angular momentum transport

(Balbus & Hawley 1991, going back to Velikhov 1959 and Chandrasekhar
1961)



Galactic Black Holes
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LMC X-3, (Wilms et al., 2001)

Problem with AGN: peak of disk in UV

=⇒Galactic Black Holes: T is higher

Find ok agreement between accretion disk models
and theory.
In general: models with just T ∝ r−3/4 and no addi-
tional (atomic) physics seem to work best?!?



Galactic Black Holes

(Davis et al., 2006)

Comparison of self-consistent accretion disk
model with LMC X-3 data =⇒ good agreement,
although values of α smaller than expected (fits
find 0.01 < α < 0.1 instead of 0.1–0.8).

Top red line: inferred accretion disk spectrum without interstellar
absorption.



The “corona”
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Beware: X-ray spectra observed from accretion
flows onto black holes are not dominated by
accretion flow!
even less so in AGN!!

=⇒Dominated by Comptonization and reflection.
Disk photons Comptonized in hot electron gas
sometimes called the “corona” – worst name in all of
astrophysics

Geometry of disk and Comptonizing plasma is
100% unclear
A rant: Do not believe anybody who tells you oth-
erwise! The only thing that is clear is that simple
“sandwich geometries” do not work – open question in
Galactic and extragalactic BHs since ≳ 25 years.



Jets

Many accretion flows are associated with jets and Outflows.

Jet formation:
t = 0 s

C. Fendt (MPIA Heidelberg), priv. comm.



Jets

Many accretion flows are associated with jets and Outflows.

Jet formation:
t = 2000 s

C. Fendt (MPIA Heidelberg), priv. comm.



Jets

Many accretion flows are associated with jets and Outflows.

Jet formation:
t = 5000 s

C. Fendt (MPIA Heidelberg), priv. comm.



Jets

Many accretion flows are associated with jets and Outflows.

Jet formation:
t = 10000 s

C. Fendt (MPIA Heidelberg), priv. comm.



Jets

C. Fendt, priv. comm.

Modern MHD models now manage to launch jets, but still severe challenges due to large scales to cover.
Black hole binaries: presence of “dark jets” even in radio quiet states =⇒ existence of a jet does not always imply radio emission!
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Outflows

Recent years: Disk winds and outflows are impor-
tant

• Driven by magnetic fields and/or radiation

• Speeds observed of ∼ few1000 km s−1

• Additional source of angular momentum loss

Higginbottom & Proga, 2015



courtesy J. Blondin

X-rays from central source heat disk surface, drive a strong wind.



Bondi-Hoyle and Wind Accretion
Early type stars (O, B, mass ≳ 10M⊙):
• strong winds, driven by radiation pressure in absorption lines
• mass loss rates 10−10 to 10−6 M⊙ yr−1

• Wind velocity

v(r) ∼ v∞
(

1 −
R⋆

r

)β

with v∞ ∼ 2000 km s−1 and β ∼ 0.5 . . . 1.0

A fraction of the wind can be accreted by a compact object
=⇒ ∼spherical accretion
=⇒ Bondi-Hoyle accretion
(Bondi & Hoyle, 1944)
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The simplest case of wind accretion is spherically symmetric accretion.

For spherically symmetric accretion, we can derive the exact solution for the gas flow from the equations of gas dynamics:

Conservation of mass is described by the continuity equation,
∂ρ

∂t
+∇ · (ρv) = 0, (2)

while the conservation of momentum is described by the Euler equation

ρ
∂v
∂t

+ ρv · ∇v = −∇P + f (3)

where f is a force density (force per unit volume).

By definition, in the spherically symmetric case the flow has only a radial component. Furthermore, if the flow is steady, then all time derivatives vanish. This means that the equation of continuity now reads

∇ · (pv) =
1
r2

d

dr

(
r2ρv

)
= 0 (4)

and therefore
r2ρv = const. = C (5)

The constant is related to the mass accretion rate: Since the inward flux of mass is given by ρ|v|, the mass accretion rate is

Ṁ = 4πr2ρ|v| (6)

and therefore

C =
Ṁ

4π
(7)

To obtain the velocity profile, we use the Euler equation (Eq. 3). Because of Newton’s law of gravitation

F =
GMm

r2
r
r

(8)

the force density has a radial component only and is given by

f = −
GMρ

r2 (9)

Inserting this into Euler’s equation then results in

ρv
dv

dr
= −

dP

dr
−

GMρ

r2 (10)

which simplifies to

v
dv

dr
= −

GM

r2 −
1
ρ

dP

dr
(11)

This differential equation can be solved under the boundary condition of some velocity at infinity. Furthermore, we need to know the equation of state, i.e., how the pressure relates to other quantities in the system. Here, we will be using the
polytropic equation of state

P = Kργ (12)

0



Bondi-Hoyle Accretion 76b

where K is some constant. As shown in lectures on thermodynamics, if the gas is isothermal, then γ = 1, if the flow is adiabatic instead, then γ = 5/3 (γ is the ratio of specific heats).

With this equation of state, the speed of sound is

c2
s =

∂P

∂ρ
= Kγργ−1 (13)

We now insert the equation of state into Eq. (11):

v
dv

dr
= −

GM

r2 −
1
ρ
γKρ−γ−1dρ

dr
= −

GM

r2 − c2
s

1
ρ

dρ

dr
(14)

But because of Eq. (4)
1
r2

d

dr

(
r2ρv

)
= 0 (4)

we have
1
r2

(
dρ

dr

(
r2v
)
+ ρ

d

dr

(
r2v
))

= 0 ⇐⇒ 1
ρ

dρ

dr
= −

1
vr2

d

dr

(
r2v
)

(15)

Inserting this into Eq. (14) gives

v
dv

dr
= −

GM

r2 + c2
s

1
vr2

d

dr

(
r2v
)
= −

GM

r2 + c2
s

(
2
r
+

1
v

dv

dr

)
(16)

Multiplying by v then results in

v2dv

dr
= −

GMv

r2 +
2v
r
c2

s + c2
s
dv

dr
(17)

and therefore (
v2 − c2

s
) dv
dr

= v

(
2c2

s

r
−

GM

r2

)
(18)

0



Bondi-Hoyle Accretion
Spherical symmetric accretion: (

v2 − c2
s
) dv
dr

= v

(
2c2

s

r
−

GM

r2

)
(18)

For r large: right hand side is positive.
Since dv/dr < 0 for accretion, this means that for large r: v < cs.
Similarly, for small r: v > cs

=⇒ sonic point for v = cs at

rsonic =
GM

2c2
s

=⇒ If the flow goes supersonic, it does so at r = rsonic
Note that cs depends on r, several other solutions are possible, but the above one is the most common one for the objects we’re looking at. See Holzer
& Axford (1970) for details.



Bondi-Hoyle Accretion
To finish the discussion of Bondi-Hoyle accretion, we now explicitly integrate Euler’s equation

v
dv

dr
+

GM

r2 +
1
ρ

dP

dr
= 0 (11)

over r: ∫
v
dv

dr
dr+

∫
GM

r2 dr+

∫
dP

ρ
= 0

inserting dP = Kγργ−1dρ and integrating then gives the Bernoulli integral
1
2
v2 +

γ

γ− 1
Kργ−1 −

GM

r
= const.

which obviously is related to energy conservation and can be written as

1
2
v2 +

c2
s

γ− 1
−

GM

r
= const. =

cs,∞
γ− 1

(19)

where cs,∞ is the speed of sound at r = ∞.
This follows since v(r → ∞) = 0.



Bondi-Hoyle Accretion
From Eq. (19) we can now determine the speed of sound at the sonic point

c2
s (rsonic) = cs,∞

(
2

5 − 3γ

)1/2

and the mass accretion rate is
Ṁ = 4πr2ρ|v| = 4πr2

sonicρ(rsonic)cs(rsonic)

Since c2
s ∝ ργ−1,

ρ(rsonic) = ρ∞
(
cs(rsonic)

cs,∞
)2/(γ−1)

Therefore

Ṁ = πG2M2 ρ∞
c3

s,∞
(

2
5 − 3γ

)(5−3γ)/2(γ−1)

(20)



Bondi-Hoyle Accretion

Mach number (M = v(r)/cs(r)) as a
function of radial distance,
ξ = r/rsonic, for all possible solutions
of the spherical accretion problem.

(Holzer & Axford, 1970, Fig. 1)



Bondi-Hoyle Accretion
Taking γ = 5/3, Eq. (20) becomes

Ṁ = πG2M2 ρ∞
c3

s,∞
= π

(
GM

c2
s,∞
)2

ρ∞cs,∞
= πr2

accρ∞cs,∞
(21)

where the accretion radius is defined as

racc =
GM

c2
s,∞

Often, racc is defined as racc = 2GM/cs, see next slide for the reason why.

racc defines the approximate radius of influence of an accreting body.



Wind accretion
If the ambient medium is not at rest: wind accretion.
In principle: do a similar calculation as for Bondi-Hoyle accretion. However, this would take too long, so let’s do
an approximate treatment here.
Let the wind’s velocity be v∞. The material in the wind is captured once

1
2
v2∞ =

GM

racc

such that the accretion radius for wind accretion is

racc =
2GM

v2∞
. . . explaining why many people like to have a factor 2 also in the definition of racc for Bondi-Hoyle accretion.

Therefore, analoguously to Eq. (21),

Ṁ = πr2
accρ∞v∞ =

4πG2M2ρ∞
v3∞



Wind accretion
To estimate the typical parameters of a wind accretor, we need to estimate v∞ for a compact object at a distance
a from the donor star
The typical velocity consists of two contributions:

1. The stellar wind velocity profile

vwind(a) ∼ vwind,∞
(

1 −
R⋆

a

)β

(8.1)

2. The orbital velocity of the compact object

vcompact(a) =

√
GM

a

Therefore

v2∞ ∼ v2
wind + v2

compact =
GM

a
+ v2

wind,∞
(

1 −
R⋆

a

)2β

∼
GM

a
+ v2

wind,∞
the last is true assuming that the compact object is outside of the wind acceleration zone



Wind accretion
Finally, making use of the fact that the wind density is

ρ∞ =
ṀW

4πa2vwind,∞
where ṀW is the wind loss rate of the donor.
Therefore, the accretion rate of the compact object is

Ṁ =
G2M2

a2vwind,∞ (GM
a

+ v2
wind,∞

)3/2ṀW

=


(

GM
av2

wind,∞
)1/2

ṀW for vorbit ≫ vwind,∞
G2M2

a2v4
wind,∞ṀW for vorbit ≪ vwind,∞

So, for M = 1.44M⊙, vwind,∞ = 500 km s−1, a = 107 km, Ṁ = 6 × 10−3ṀW, i.e., the Eddington rate (ṀEdd = 2.9 × 10−8 M⊙ yr−1 for
1.44M⊙) is reached for ṀW = 4.8 × 10−6 M⊙ yr−1, which is very realistic.



Realistic hydrodynamical computations are
very difficult (asymmetry of accretion process,
ionization of wind, large range of length-scales
involved,. . . ).

(Blondin 1994, Fig. 4)



Accretion in HMXB

Strömgren sphere

tidal stream

photoionization wake

compact
object

Donor Star

accretion wake

Principal components for
wind-accretion:
• Ionized Strömgren region (wind

ionized by X-rays from compact
object).

• Accretion shock around compact
object (since vorb > cs).

• Ionization wake where material is
overdense.



Accretion in HMXB

Strömgren sphere

tidal stream

photoionization wake

Vela X-1

HD 77581

accretion wake

In realistic HMXB, because the accreted
material still has some angular
momentum, a small accretion disk still
forms.

J. Blondin: “The disk is being BASHED by the stellar wind, BATTERED by the tidal stream, and BLASTED
by X-rays”



(Čechura & Hadrava, 2015, Fig. 2; parameters for Cyg X-1)

Dependency of structure of wind accretion for changes in α



Summary

Accretion is one of the most important physical processes in universe

Could only touch some of the topics of accretion physics here

Topics missed:
• magnetospheric accretion
• outburst behavior of binaries

can be used to measure α

• thick disks
• supercritical accretion

ULX, radiation driven warping. . .

• radiatively inefficient accretion flows (“ADAFs”) and accretion driven inflow/outflow solutions (ADIOS)
• time variability

sorry ;)



*
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