

MIGA : a test bench for gravitational wave observation with cold atom interferometers

Quentin Beaufils

LNE - SYRTE – Observatoire de Paris For the MIGA collaboration

Inertial sensing technologies based on atom interferometry : 30 years of development.

Applications :

- Gravimetry/Gradiometry
- Intertial sensing and navigation
- Fundamental physics

State of the art : measure of **g** on Earth with a few 10^{-8} m/s² uncertainty.

Overview of the current landscape

The MIGA Project

- Long baseline (150m) cold atom gradiometer.
- 3 atom interferometers on the same pair of lasers.
- Underground facility at LSBB: ideal environment.
- Gravity gradient sensitivity of $10^{-13}s^{-2}/\sqrt{Hz}\omega$ 2Hz

Implementation at LSBB

5

ALPhA NOV

.
Centre Technologique Optique et Lasers

CELIA

IVERSITÉ

ARTEMI

A Laboratoire Kastler Brossel

LEA

French "Equipement d'Excellence" Initiative 17 partners

Applications

6

• **Karstic aquifers: complex multi-scale hydrodynamics**

Courtesy: C. Danquigny, Univ. Avignon

Non-invasive measurements to construct and constrain hydrodynamics numerical models.

• **Demonstrator for gravitational wave observation**

Performances study and proof of concept for future large infrastructures.

Sensitivity to gravitational waves

Principle of an atom interferometer (AI)

Atom number \overline{N}

The AI records the relative phase between

the 2 counter-propagating lasers:

$$
\phi(t) = \varphi^+(t) - \varphi^-(t)
$$

The GW affects this relative phase (it changes the 'light travel time' $t_r)$:

$$
\varphi^{-}(t) = \varphi^{+}(t - t_{r}) \to \phi(t) = \frac{d\varphi}{dt}(t) \times t_{r} \quad \text{with} \quad t_{r} = \frac{2(L-X)}{c} \times \frac{h(t)}{2}
$$

$$
\phi(t) = \frac{4\pi v_{0}(L-X)}{c} \times \frac{h(t)}{2}
$$

$$
\Delta\Phi = \varphi(0) - 2\varphi(T) + \varphi(2T) \sim kh(L-X)\sin^{2}\frac{\omega T}{2}
$$

Case of a differential gradiometer

- Measurement of the differential phase between 2 physically separated AIs
- Gradiometer signal = $\phi(X) \phi(X + L)$

• Position noise of the retro-reflecting mirror is common \rightarrow rejection of Δx_2 .

$$
\psi(X,t) = 2nk \left[\frac{L\ddot{h}(t)}{2} + a_x (X + L, t) - a_x (X, t) \right] \otimes s_\alpha(t)
$$

 W signal **Gravity gradient Function**

General idea : repeat the gradiometer experiment to average the Newtonian Noise (NN).

NN characteristic length (few km at most) << GW wavelength

 \rightarrow average the NN to zero.

Strain sensitivity

12

ELGAR project (B. Canuel *et al* 2020 *Class. Quantum Grav.* **37** 225017)

Status of the project

The atom heads

MIGA MATTER WAVE LASER - BASED INTERFEROMETER

Raman velocity selection and detection

2 photon coherent Raman transitions

The atom heads

MIGA

16

5 atom heads were produced at SYRTE

10⁷ atoms/s flux in the right state for interferometry.

Effective temperature down to 50 nK (in one direction)

Installation in LSBB

Installation in LSBB

19

25 tubes to transport, connect and bake for high vacuum

Conclusion

20

- **GW detection with AI**: use free falling atoms instead of suspended mirrors
- \cdot \rightarrow potential gain at low frequency (< 10 Hz)
- Possibility to reduce the effect of **Newtonian Noise on ground**

- Many **challenges** in cold atom physics to reach $\sim 10^{-20}/\sqrt{Hz}$ around 1 Hz
- \cdot \rightarrow AI could nicely **complement** (or combine with) optical interferometry
- **MIGA** : proof of concept + applications in geosciences.

• Ongoing effort for a design study at the European level (ELGAR project).