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Introduction – cold atom interferometers
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Inertial sensing technologies based on 

atom interferometry : 30 years of 

development.

Applications :

• Gravimetry/Gradiometry

• Intertial sensing and navigation

• Fundamental physics

State of the art : measure of g on Earth

with a few 𝟏𝟎−𝟖m/𝒔𝟐 uncertainty. 



Overview of the current landscape
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Space projects
(CAL, CARIOQA)

GW observation
(ZAIGA, ELGAR)

MuQuans/Xblue

Lab experiments

Commercial
applications

Large infrastructures
(MIGA)

Tests of fundamental physics
(STE-QUEST)

Spatial geodesy

Geosciences
(Geodynamics,
Hydrogeology)

Tests of 
fundamental physics



The MIGA Project

• Long baseline (150m) cold atom gradiometer.

• 3 atom interferometers on the same pair of 
lasers.

• Underground facility at LSBB: ideal
environment.

• Gravity gradient sensitivity of 10−13𝑠−2/ 𝐻𝑧@ 
2Hz
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Implementation at LSBB
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Nice

Toulon

Partners :

French “Equipement
d’Excellence” Initiative
17 partners



Applications
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Courtesy: C. Danquigny, Univ. Avignon

• Karstic aquifers: complex multi-scale
hydrodynamics

Non-invasive measurements to construct and 

constrain hydrodynamics numerical models.

• Demonstrator for gravitational wave
observation 

Performances study and proof of 

concept for future large infrastructures.  



Sensitivity to gravitational waves



Principle of an atom interferometer (AI)
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Effect of a GW on the interferometer

9

The AI records the relative phase between

the 2 counter-propagating lasers: 

𝜙(𝑡) = 𝜑+ 𝑡 − 𝜑−(𝑡)

The GW affects this relative phase (it changes the ‘light travel time’ 𝑡𝑟) :

𝜑− 𝑡 = 𝜑+ 𝑡 − 𝑡𝑟 → 𝜙 𝑡 =
𝑑𝜑

𝑑𝑡
𝑡 × 𝑡𝑟 with 𝑡𝑟 =

2 𝐿−𝑋

𝑐
×

ℎ 𝑡

2

𝜙 𝑡 =
4𝜋𝜈0 𝐿 − 𝑋

𝑐
×
ℎ 𝑡

2

ΔΦ = 𝜑 0 − 2𝜑 𝑇 + 𝜑 2𝑇 ∼ 𝑘ℎ 𝐿 − 𝑋 sin2
𝜔𝑇

2



Case of a differential gradiometer
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• Measurement of the differential phase between 2 physically separated AIs

• Gradiometer signal = 𝜙 𝑋 − 𝜙(𝑋 + 𝐿)

• Position noise of the 

retro-reflecting mirror is

common

 rejection of Δ𝑥2.

GW signal Gravity gradient
AI sensitivity

function



Newtonian noise
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General idea : repeat the gradiometer experiment to average the 

Newtonian Noise (NN).

NN characteristic length (few km at most) << GW wavelength

 average the NN to zero.

Newtonian Noise



Strain sensitivity
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ELGAR project (B. Canuel et al 2020 Class. Quantum Grav. 37 225017)



Status of the project



The atom heads
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Raman velocity selection and detection
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ȁ𝐹 = 2, ۧ𝑘 = 0

2 photon coherent
Raman transitions

ȁ𝐹 = 1, ۧ𝑘 = 2ℏ𝑘𝐿

Raman velocimetry

Q. Beaufils et al. arXiv 2209.10234



The atom heads
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5 atom heads were produced at SYRTE

107 atoms/s flux in the right state for 

interferometry. 

Effective temperature down to 50 nK (in 

one direction)



Intracavity interferometry in Bordeaux
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D. O. Sabulsky et al. arXiv: 2201.11693

30 kHz
60 kHz 120 kHz



Installation in LSBB
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Installation in LSBB
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25 tubes to transport, connect and bake for high vacuum



Conclusion

• GW detection with AI: use free falling atoms instead of suspended mirrors

•  potential gain at low frequency (< 10 Hz)

• Possibility to reduce the effect of Newtonian Noise on ground

• Many challenges in cold atom physics to reach ∼ 10−20/ 𝐻𝑧 around 1 Hz

•  AI could nicely complement (or combine with) optical interferometry

• MIGA : proof of concept + applications in geosciences.

• Ongoing effort for a design study at the European level (ELGAR project).

20


