Sixième Assemblée Générale du GdR Ondes Gravitationnelles

LIGO-Virgo-KAGRA network: state of the art and future plans

Eleonora Capocasa

Nov 2022

Toulouse -1

Second generation GW detector network

2G GW detector network observation plan

З

Observation summary

- 90 events detected so far
- Remarkable detection rate increase in O3
- Several "exceptional" events published
- Population analysis (not only study of individual events)
- Upper limits on several sources and physical effects (i.e. GW background, lensing, specific dark matter candidates)

Modified Michelson interferometers

GW detector noise budget (design)

• Only fundamental noises considered here

GW detector real noise budget

Thermal noise

- Thermal fluctuation of a atoms and molecules of mirrors and suspensions sets a limit on the rest condition of the test masses
- How are these fluctuations distributed in frequency?

Quantum noise

• Quantum noise is originated by vacuum fluctuation entering the dark port

Quantum noise

• Replace standard fluctuation with **squeezed vacuum fluctuation**

Successful application to 2G detectors since O3

Advanced LIGO

- Best measured ~3 dB
- BNS Range improvement: 14%
- Detection rate improvement: 50%

Advanced Virgo

- Best measured ~3 dB
- BNS Range improvement: 5%-8%
- Detection rate improvement: 16-26%

AdVirgo vacuum squeezed source

Advanced Virgo+

	2019	2020	2021	2022	2023	2024	2025	2026
03	03							
AdV+ Phase I	Construction and Preparation Phase II							
		Instal	lation					
			Commis	sioning				
04					04			
AdV+ Phase II	Construction							
						Installation		
						Co	Commissioning	
05								05

Now

PHASE I (O4) \Rightarrow Target ~100 Mpc

Quantum noise reduction

PHASE II (O5) \Rightarrow Target ~200 Mpc

Thermal noise reduction

Advanced Virgo+ Phase I

• Main target: quantum noise reduction \Rightarrow ~100 Mpc

Advanced Virgo+ Phase II

• Main target: thermal noise reduction \Rightarrow ~200 Mpc

- 6 cm radius \Rightarrow 10 cm radius
- Larger end mirrors
 - 35 cm diameter \Rightarrow 55 cm diameter
- Better mirror coatings
- Further increase of laser power

• 40 W \Rightarrow 60 W \Rightarrow 80 W

Input Mode WE

O4 commissioning challenges: signal recycling

- Goal: enlarge the detection bandwidth
- Issues:
 - ITF responses not as expected (optical spring)
 - Need for additional thermal actuator for compensating optical defect (realised in April -> slow down progress up to June 22)
 - No good angular control signal for SR found so far

Frequency dependent squeezing ready for injection in ITF

• Goal: quantum noise reduction even at low frequency

- Standalone squeezing measurement performed with the required rotation angle (25 Hz)
- On-going work to improve stability

Virgo commissioning toward O4 summary

- Issue with control stability solved in July
 - Installation of a new thermal actuators
- On going: optimisation of thermal and alignment working point
 - Looking for SR alignment signal
- Soon: sensitivity measurement, noise hunting and squeezing injection

Advanced LIGO+ commissioning status

Main actions toward O4

- Test mass replacement to remove point absorber
- Frequency dependent squeezing (filter cavity to be commissioned)
- Double power in the arm (from 200 kW to 400 kW)
- Techical noise reduction

Target 175 Mpc

KAGRA status

Japanese 2.5 generation detector

- Undeground
- Cryogenic

BNS range evolution comparison

J.Yokohama, "status of KAGRA" LVK meeting 09/22

KAGRA configuration for O4

• Target sensitivity ~1-10 Mpc

• Fabry-Perot Michelson controlled on September

Possible future roadmap for ground base detectors

• See E.Tournefier talk about Virgo_nEXT tomorrow

Expected detection rates

- $O3 \Rightarrow O4$
 - ~ x 3 BBH (almost ~1 per day, total ~250/year)
- $O3 \Rightarrow O5$

~x 10 BBH (a few per day, total ~1000/year)

- ~ 5-10 BNS in O4
- O4 average BNS localization: ~hundreds deg²
 Kagra sensitivity few Mpc

Alternation of observing/upgrades periods

Summary

- Network of 2G ground GW detectors operating since 2015 provided many detections (~90) and a lot of science
- They are now on a commissioning phase in view of O4 (March 2023)
- Observation plan scheduled up to 2028 (O5 upgrades already funded)
 - O4 -> almost 1 detection per day
 - O5 -> 3-4 detections per day
- Post-O5 plans under discussion (concept study released)
 - Sensitivity limit of the infrastructures not yet reached
 - Fill the gap between 2G and 3G

BACK UP SLIDES

Seismic noise isolation requirement

- Seismic motion at ~10 Hz: ~ 10^{-9} m/ \sqrt{Hz}
- Required mirror motion at ~10 Hz: ~ 10^{-19} m/ \sqrt{Hz}

Need for high performance vibration isolation system (at least 10 order of magnitudes)

How to isolate mirrors from ground vibrations?

• System based on a chain of pendulums to isolate the test mass from the vibration of their suspension point

Transfer function: motion of mirror -> motion of suspension point

Mirrors

• Substrates: ultra-pure fused silica

• Extremely small roughness (<0.5 nm rms)

- Coatings
 - Multilayers of titania-doped tantala/silica
 - Main responsible for mirror thermal noise
 - Long term effort to find more performant materials

Newtonian noise

Due to fluctuations of the terrestrial gravity field

- Mainly produced by density perturbation in the ground (due to seismic waves) or in the atmosphere
- It couples directly to the mirrors, bypassing any isolation system
- It is expected to limit low frequency sensitivity
- Cancellation techniques under testing

Observations summary

01-02 (2015 - 2017)

O3a (2019)

O3b (2019 - 2020)

- 11 detections (10 BBH, 1 BNS)
- GWTC-1 first catalog of GW transient sources (2019)

- 39 detections
- GWTC-2 second catalog of GW transient sources (2020)
- 35 detection
- <u>GWTC-3 (2021)</u>

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern