Athena and LISA synergies

Natalie Webb

Institut de Recherche en Astrophysique et Planétologie, Toulouse, France

Natalie Webb **1**

Some objects that are observed in X-ray

Athena

Athena

ATHENA:

4

Credit: J. Sanders, C. Pinto, A. Fabian & X-IFU team

Perseus spectrum with Chandra Perseus spectrum with X-IFU

Natalie Webb

In the meantime….. XMM-Newton 4 MM-DR12s

Webb et al. (2020)

3 Feb. 2000–31 Dec. 2021 Released : 28th July 2022

939270 detections, 630347 unique sources - detected up to 84 times

Natalie Webb

How do supermassive black holes (SMBH) form ?

Stellar mass black holes (~3-100 M_{\odot}) form at the end of the lives of massive stars or from the coalescence of neutron stars

But supermassive black holes (~10⁶⁻¹⁰ M_o) can not form in the same way

Accretion onto a stellar mass black hole, even at the maximal rate (Eddington limit), difficult to explain a population of black holes of \sim 10 $^{\circ}$ M_o at z>7 (e.g. z~7.1e.g. Mortlock et al. 2011, or 8x10 $^{\circ}$ M_o at z=7.54 Bañados et al. 2018)

Requires high merger rates and/or more massive « seeds » (~102-5 M_o) and/or super-Eddington accretion to form supermassive black holes (SMBH, e.g. Volonteri, 2012; Volonteri, Silk & Dubus, 2015)

Natalie Webb

Evolution from seeds to supermassive black holes

LISA :

- Pinpoint mergers with time determine merger rate / redshift
- Locate low mass seeds (intermediate mass black holes)

X-ray / Athena / electromagnetic data

- Identify new binary massive black holes (MBH)
- Locate low mass seeds through tidal disruption events
- Study super-Eddington accretion
- ●Measure radial velocities in binary MBH
- Study gas dynamics, prior to merger
- Locate the event for multi-wavelength follow-up
- Study merger environment to understand galaxy hosts

Key : before LISA launch after LISA/Athena launch

Natalie Webb

- Studied 3 binary SMBH with <1 kpc separation
- \bullet NGC 7727 @ 27.4 Mpc, M₁~1.54 x 10⁸ M_o & M₂~6.33 x 10⁶ M_o
- \bullet OJ 287 @1.3 Gpc, sep. 0.056 pc, M₁~1.8 x10¹⁰ M₀ & M₂~1.5 x10⁸ M₀
- \bullet PKS 2131-021 @ 1.5 Gpc, sep. 0.01-0.001 pc
- Identified spectral characteristics
- Searched for similar objects in 4XMM-DR11
- Found objects used for input + other candidates, inc. NGC 7582
- \bullet NGC 7582 is a galaxy in pair @~20 Mpc
- Following up other candidates
- ●Method promising and can be used with other X-ray catalogues

Natalie Webb

9

XMM-Newton data of NGC 7582

- X-ray colour image shows red and blue side
- Radial velocity study lends weight to rotation detected
- XRISM spectroscopy could help confirm rotation
- Athena/X-IFU would be the ideal instrument to study rotation,

New binary MBH from long-term lightcurves

● Binary SMBH long-term lightcurves can show (sinusoidal) modulation

500

500

1000

MID - 53600

SDSS 1014350.13+141453.0

MJD - 53600

RX J024252.3-232633

17.7

17.9 18.0

18.1

18.2

 17.7

18. 18.2 18.3

18.6

17.5

 $\frac{9}{2}$ 18.0
 $\frac{1}{2}$ 18.5

 Ω

 Ω

500

500

1000

1000

MID - 53600

PKS 0157+011

MJD - 53600

US 3204

ignitud 17.8

3000

3000

2500

2500

● Graham et al. (2015) analysed Catalina real-time survey data of 243500 quasars Graham \bigoplus al. (2015) **UM 211** 17.15

17.35

17.50

17.55

17.3

17.4 17.5 17.6

 17.8 17.9 18.0

18.4 18.6

18.8

Magnitude 19.0 19.2 19.4 19.6 19.8

- Found 111 candidate binary SMBH (<0.1 pc sep.)
- Searched for well-sampled long-term OM lightcurves
- 441 sources showed ~Keplerian modulation
- Majority stars, some binaries
- 6 potential binary SMBH
- To search other optical/UV catalogues
- 20.0 19.0 500 2500 3000 Ω 500 1000 1500 ● X-ray period~3.7 yr found in OJ 287 (Foustoul et al., in prep) & ~12 yr period (Lehto & Valtonen, 1996) Natalie Webb

6ème Assemblée Générale du GdR Ondes Gravitationnelles, Toulouse, Oct 2022

11

2500

2500

2000

2000

- Correlate X-ray modulation with GW chirp. If modulation is dominated by Doppler and/or relativistic boosting, can test speed of gravity on cosmological scales compared to photon propagation (Abbott et al. 2017a; Haiman 2017)
- Identify host galaxy through X-ray/optical follow-up so distanceredshift relationship can be measured to \sim 1 % to probe late time background expansion of Universe (Tamanini et al. 2016)

Natalie Webb 6ème Assemblée Générale du GdR Ondes Gravitationnelles, Toulouse, Oct 2022

12

Extreme Mass Ratio Inspirals (EMRIs)

X-ray/ Athena

- EMRIs possibly detected ??
- Find other examples (e.g. Quintin, Webb et al., to sub) 30
- Probe effect of acc. disc
- Search for (IMBH-SMBH) radial velocity signatures
- Study EMRI environment
- LISA :
- Pinpoint EMRIs

24 Dec 2018 16/17 Jan 2019 40 $20\,$ 10

13.9

Time [hours]

27.8

 0.0

Miniutti et al. (2019)

- ●Measure general-relativistic and Lense–Thirring precession
- Constrain compact object parameters

Key : before LISA launch after LISA/Athena launch Natalie Webb

13 6ème Assemblée Générale du GdR Ondes Gravitationnelles, Toulouse, Oct 2022

 0.0

6.9

Time [hours]

Double white dwarf binaries

Up to12000 double white dwarfs could be detected with LISA (Lamberts et al. 2019)

Athena

- Insight into start of mass transfer, to understand rates of SN Ia
- Routinely measure gravitational red-shifted Fe Kα line to give constraint on the white dwarf mass (Nandra et al., 2013).
- ●Measure temp., mass & chemical composition of novae + supersoft sources to understand SN Ia progenitors (Motch et al., 2013).

LISA :

- Find double white dwarfs to better understand stellar evolution
- Study rôle of grav. wave emission and accretion in evolution

Key : before LISA launch after LISA/Athena launch Natalie Webb

- Observed by LISA ~a few years before coalescence (z \leq 0.5, Sesana 2016)
- If some accretion, they could be detected with Athena (Lamberts et al. 2018)
- Locate binary to be followed during coalescence (Colpi et al. 2019)

Summary

- ●How supermassive black holes form and grow still open questions
- ●LISA observations will identify seeds and probe MBH mergers
- ●Athena can locate the mergers for follow-up
- ●Athena will enable detailed studies of accretion & environment
- ●Complementary LISA/Athena observations of mergers can constrain physics and cosmology
- ●Electromagnetic observations will find pre-mergers in massive catalogues using spectral constraints and long-term modulation
- ●LISA/Athena observations will give insight into double white dwarfs and thus type Ia supernovae (essential for measuring cosmological distances)
- ●Stellar mass compact object binaries can be located before merger and followed in real time

Natalie Webb

Backup slides

Backup slides

Tidal disruption events

Detecting TDEs allows us to find massive black holes normally too faint to detect

Tidal radius inside black hole (BH) event horizon for $M > 10^8 M_{\odot}$

Observe TDE from lower mass BHs + accretion (super-)Eddington

Could help understand the growth of supermassive black holes (SMBH)

18

1.7 $\pm^{2.85}_{1.27}$ x10⁻⁴ TDE per galaxy per yr (Hung et al., 2018) 1.27

Natalie Webb

SF2A 2022, Gravitational-wave astronomy and multi-messenger astrophysics

Low mass tidal disruption events

SF2A 2022, Gravitational-wave astronomy and multi-messenger astrophysics

Extreme tidal disruption event

A failed tidal disruption

SF2A 2022, Gravitational-wave astronomy and multi-messenger astrophysics

Understanding HLX-1

- Black hole mass ~20000 M_o with compact companion (Godet et al. 14)
- Failed tidal disruption event (TDE) can explain HLX-1data
- Possibly due to merger causing cluster star to change trajectory
- Likely to be fairly common as only observed for ~30 years
- Other systems likely to exist
- More TDEs detected in galaxies that have undergone merger (Arcavi et al. 2014)

22

98 TDEs @ https://tde.space about half are detected in X-ray

- Found 10 in the XMM catalogue (Lin et al many papers)
- Hundreds more expected to be hidden in XMM catalogue (Webb, 2019), but need to identify them
- Require rapid follow-up observations to constrain TDE nature
- Work in progress to do this (Quintin et al., in prep + PNHE talk)
- TDEs (and other transients such as gravitational wave events, γ-ray bursts, cataclysmic variables, tidal disruption events, supernovae, X-ray binary outbursts, magnetars, etc) could then be followed up in near real time

4XMM-DR10

Open questions concerning tidal disruption events

 \overline{a}

2006

2008

2010

2012

2014

2016

- or e.g. shocks in accretion flows (Hryniewicz & Walter 2016)

Why are some TDEs detected at some wavelengths and not others? - possibly from reprocessing of X-ray emission from the disk

- or from shocks between the debris streams as they collide
- or a combination of both
- or due to viewing angle, obscuration by dust, or something else

HLX-1

 $t = 24.5$ days Orbital evolution of a companion, n
ing column density
log column density polytrope n=1.5, Γ=5/3 and initial periapsis separation from the IMBH \rightarrow 1000 (relative to the tidal E
 $\times -2000$ radius) of 2.3 (red), 2.4 (magenta), 2.5 (blue), 2.7 (black), -3000 0.5 $\lambda = R/O.01R \odot$ and $M_4 = M_{BH}/10^4 M \odot$ -4000 -0.5) \Box 6000 1000 2000 3000 4000 5000 \times [R_o] \mathbf{z} .
–
– λyr \blacktriangleright $\mathbf O$ rio 0 10 a
ਹ 50 100 150 Orbit (Godet et al., 2014) after pass number

3XMM-DR8 – data proposed

- 332 columns of information including :
- Identifiers/coordinates
- Observation date/time and observing mode
- Exposure /background info
- Extent
- Counts/fluxes/rates
- Hardness ratios (HR)
- Maximum likelihood
- Quality flags
- Variability

