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» CBC search

» Matched filtering :
correlation of a template
with data

» Template banks :
~ 500000 templates (will
get larger in the future)

» "Real-time search” : need

to accelerate the process
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Example of a CBC template
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Singular Value Decomposition for template banks

H is the matrix containing the templates (7' x N)
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Issues with SVD :
» Impossible to do when the matrix is too big : complexity
O(NT?)
» Choice of the number of reduced templates ?
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Motivations and objectives

Overall goal : reducing the computational time on the matched
filtering portion.

» Using random projections instead of SVD for the
dimensionality reduction

» Investigating the use of the OPU for doing random
projections

» Tackling the reconstruction cost

In light of these goals, we also tried to implement these techniques
into the PyCBC pipeline.
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Random projections

Possible solution : random projections

—
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"Autorank” algorithm : projecting successively on small spaces
(dimension ~ 5) until we reach a small enough error.

Complexity : O(NT1I)
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First results

Reproducing the results of Reza et al.[2]:
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Figure 2 of Reza et al.
Similar figure with our implementation

For a 10~ error on the SNR, 160 reduced templates (against 140

for the SVD). But 54,6s of execution time for the SVD and only
8,9s for RP.
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Optical Processing Unit :
Hardware developed by LightOn
to perform random projections
using photon diffusion

Not well matched for our
purposes :

» Using low precision
encoding of the data
greatly reduces the
performance

— Theoretical curve SVD.
—— Theoretical max RP
—— Theoretical expectation RP
— Measured error RP

40— Measured error RP OPU

» Using high precision leads
=it o ——r to high computational
time allowed to the

Results for the OPU with 8 bits precision enCOdmg-
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The reconstruction cost issue
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Matched filtering
O(N T log(N))

Matched filtering

Reconstruction cost is actually higher than the matched filtering
cost : how can we reduce it ?
We want to avoid reconstructing everything. [1] proposes a

hierarchical approach, reconstructing only a part of the SNR.
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Methods for reducing the reconstruction cost

Two levers for acting on the reconstruction cost

» Reducing N : reconstructing only some part of the
timeseries — O(nT1)

» Reducing T : reconstructing only some templates
— O(Ntl)
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Reducing N ("cropping”)

Main idea : identifying the regions in the reduced templates SNRs
above a certain threshold, and reconstruct only those.

—— Regular SNR
-~ Cropped SNR
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Reducing N : results

Toy example : uniform template bank, GW150914 event
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Difference between the peak SNRs and the
Peak SNR for each template
true ones, with and without the cropping

Only 364 timesteps out of 114688 are reconstructed : reduces
operation count by x300 !
SNR error below 1072 : suitable for detection.
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Main idea : looking at the coefficient of the Q matrix to see which
templates are relevant to reconstruct, based on which reduced
template(s) have the highest peak SNR.
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PyCBC implementation

| implemented the random projections within the PyCBC pipeline,
along with the cropping method.

» Still issues with implementation preventing to fully get the
theoretical computational gain

» numpy memory access when slicing is a significant cost
» need to change how the x? is computed

» Few errors compared to regular methods

» 1 trigger/4900 missed with random projections
» 11 triggers/4900 missed with RP + cropping (x56
reduction factor)
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Conclusion

Takeaways :

» Random projections are a viable alternative to SVD for
dimensionality reduction in the context of GW

» Promising for subsolar masses search or 3rd generation

» Reconstruction cost is a large obstacle but it can be
overcomed

Perspectives :

» Solving the remaining issues with the PyCBC
implementation

» Making a sensitivity analysis
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