CONSTRAINING COSMIC STRING NETWORKS WITH EPTA

6^e AG du GdR Ondes Gravitationnelles – Octobre 2022

Hippolyte Quelquejay – APC – quelquejay@apc.in2p3.fr I I/10/2022

COSMIC STRINGS

• Topological strings

As it expands and cools down, the Universe might have acquired a domain structure

• Energy scale of the phase transition $\eta \leftrightarrow$ String tension μ

$$\frac{G\mu}{c^4} \approx 10^{-6} \left(\frac{\eta}{10^{16} \text{ GeV}}\right)^2$$

• A gateway to high energy physics

SGWB PRODUCED BY COSMIC STRING

 $\Omega_{gw}(t_0,f) \propto (G\mu)^2 f \int_0^{t_0} dt \left(\frac{a(t)}{a(t_0)}\right)^3 \int_0^\infty d\ell \,\ell \,n(\ell,t) \,P\left(\frac{a_0}{a(t)}f\ell\right)$

String tension

- BOS model (solid) [1309.6637]
- LRS model (dashed) [1006.0931]

Power radiated Number of kinks

credits: Pierre Auclair

SGWB PRODUCED BY COSMIC STRING

3/12

PULSAR TIMING ARRAY

- Use pulsar as astrophysical clocks as they emit periodic radio pulses due to a fast & stable spin
- Imprints of GWs are expected in the difference between the ToAs of the expected and the observed radio pulses
 - \rightarrow spatial correlations between pulsars
- Catalog of pulsars used : EPTA (DR2 6 pulsars) Chen et al [2110.13184]

PTA – NOISE MODEL & HYPOTHESIS

Noise model used on EPTA DR2 (6 pulsars) - Chen et al (2021)

- For individual pulsar Chalumeau et al (2021)
 - Radiometer Noise (White Noise) : fixed parameters
 - Spin noise (Red noise) : Power law PSD \rightarrow 2 parameters for each pulsar
 - Dispersion measure variation (Red noise) : Power law PSD \rightarrow 2 parameters for each pulsar
- A Common Red Noise (CRN) is already observed in all PTAs
 - \rightarrow Aim : can we use this common noise to constrain cosmic strings (CS) networks ?
 - I. Constrain the string tension $G\mu$
 - 2. Compare the gravitational CS noise model with a common uncorrelated noise (CURN)
 - 3. Study the influence of power radiated by loops in GWs on these results

HI – GW SIGNAL FROM COSMIC STRINGS

• BOS model (blue line)

 $\log_{10}(G\mu) = -10,37^{+0,18}_{-0,15} \text{ (I-sigma)}$ $\log_{10}(B_{BOS}^{CURN}) = 1,5^{+0,3}_{-0,3} < 2$

• LRS model (orange line)

 $\log_{10}(G\mu) = -11,01^{+0,12}_{-1,27} \text{ (I-sigma)}$ $\log_{10}(B_{LRS}^{CURN}) = 2,8^{+0,3}_{-0,3} > 2$

 \rightarrow Cosmic String SGWB is disfavoured compared to a CURN, why ?

HI – RESPECTIVE CRN SAMPLED SPECTRUMS

500 sampled PSD from an analysis with only a CURN (Power Law)

$$\log_{10}(A) = -14,30$$
 $\gamma = 3,80$

PSD of SGWB with BOS model

PSD of SGWB with LRS model

7/12

H2 – CURN + GW SIGNAL FROM COSMIC STRINGS

- BOS model (blue line) $\log_{10}(G\mu) \leq -10.5$ (I-sigma)
- LRS model (red line) $\log_{10}(G\mu) \leq -11.6$ (I-sigma)

 \rightarrow Strong interplay between the GW signal and the CURN

H3 – CS SGWB WITH VARYING KINK NUMBER

- Kinks appear with intercommutation of strings
- The more kinks there are, the greater the GW emission power of the loop is $\rightarrow \Gamma$
- Number of kinks on loops is still poorly known (gravitational backreaction, limits in simulations...)

Effect of increasing kink number

- BOS model : increase spectral index, decrease amplitude
- LRS model : tend to constant spectral index, smaller effect on amplitude

H3 – CS SGWB WITH VARYING KINK NUMBER

• BOS model

* $G\mu$ is less constrained than with fixed 2 kinks

Correlation as opposite effects on amplitude

- LRS model
 - No significant effect on tension and BF
 - High number of kinks only to increase spectral index at low frequency

10/12

H3 – CS SGWB WITH VARYING KINK NUMBER

- BOS model
 - $G\mu$ is less constrained than with 2 kinks
 - Correlation as opposite effects on amplitude
 - * $\log_{10}(G\mu) = -9,25^{+0,65}_{-0,61}$ (I-sigma) * $\log_{10}(B_{CURN}^{BOS}) \approx 0,1^{+0,1}_{-0,1}$

CONCLUSIONS

• The CRN detected in EPTA data (DR2) can be interpreted by cosmic strings SGWB with:

For BOS model : $\log_{10}(G\mu) \approx -10,4$ For LRS model : $\log_{10}(G\mu) \approx -11,1$

- But the PSD and the GW signature of the signal is, for the moment, disfavoured compared to a CURN (especially for the LRS model)
- Trying to probe a GW signal in addition to a CURN put upper bounds for the string tension For BOS model : $\log_{10}(G\mu) \le -10.5$ For LRS model : $\log_{10}(G\mu) \le -11.6$
- In comparison, the constraint obtained by CMB analysis is : $\log_{10}(G\mu) \leq -7$ [Charnock et al, 2016]
- However for the BOS model, the presence of numerous kinks ($\Gamma \sim 500$) could decrease this constraint by one order of magnitude and the model becomes indistinguishable from a CURN