
Using Machine Learning Algorithm to 
search for gravitational waves progenitors

PhD student: Julien Marchioro (APC) 
Supervisors : S. Chaty & E. Chassande-Mottin (APC)

AG GdR OG - 10/10/2022

How can we train a machine learning algorithm to infer 
the origin of the low mass binary black holes detected in 

LIGO/Virgo ?



LIGO/Virgo mission

• Number of gravitational waves detections 
coming from compact binaries 
coalescence constantly increasing
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Total mass vs Mass ratio of the GWTC-3 detected events. Credits Abbott 
et al. (2021)

• Different scenarios for binary black holes 
(BBH) formation (dynamic or isolated)

• Could we predict the origin of isolated 
BBH using machine learning ?



Simulations and predictions
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Merger rate density of DCO. Credits 
García et al. (2021)

• Binary Population Synthesis 
simulations are fast but not detailed

• Detailed binary evolution 
simulations are slow but detailed.

• Both can be used for statistics of 
double compact objects (DCO) 
merging rate with compatible results.

Merger rate density of DCO. Credits 
Santoliquido et al. (2020)



MESA simulations

AG GdR OG - 10/10/2022 4

ZAMS 
binary

Star + star  
 

 evolution

First 
supernova 

event

Star + CO 
evolution

Second 
supernova 

event

Common 
enveloppe

Stellar 
merger

Disrupted 
binary

Disrupted 
binary

Double 
compact 
objects

Stellar 
merger Star + CO 

evolution

• 1 simulation 
~10-100 CPU 
hours 

• CE phase : 
 

• Asymmetric kick during 
supernova event not 
taken into account 

ΔEbind = αCEΔEorb



The dataset

• 27k simulations in total, 22k 
from García et al. (2021) 

• Final compact binary :  
Mass of the first object :  
Mass of the second object :  
Orbital distance :  
Merging time :

m1f
m2f

af
tmerge
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Initial binary Lower value

Mass of the first star

Mass of the first star

Orbital distance

Metallicity

Mass transfer efficiency

Common enveloppe efficiency

ai

m2i

−log(z)

β

αCE

[20M⊙,91M⊙]

[30R⊙,500R⊙]

[14M⊙,62M⊙]

{1.8,2.2,2.4,3,4,5}

{0.2,0.4,0.6,0.8}

{1,2}

m1i



Merger events in the dataset
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Termination Number Percentage of 
the total dataset

CE merge 
phase 3157 12 %

Binary 
disruption 33 < 1%

Numerical 
issues 2733 10 %

Mergers (within 
Hubble time)

21170 
(3197)

78 %  
(12 %) 

Total 27093 100 %
                                 Representation of the dataset



Machine Learning project

• Use MESA simulations to train 
regressor to infer final state from initial 
parameters of massive binary stars 

• We want to train it such that 
err(target) < err(LVC)

Features TargetsRegressor
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LIGO/Virgo 
predictions

Progenitors
Bayesian inference



Correlation map between initial and final parameters

Results (1) : Sanity check

• Strong correlations 
between final masses and 
initial parameters 

• Weaker correlations for final 
orbital separation and  
merging time
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Stellar 
winds

Mass 
transfer

Direct 
correlation

Direct 
correlation

Surprising



Results (2)

Total mass vs mass ratio of GWTC-2 detections Credits Abbott et 
al. (2021)
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Total mass vs mass ratio for the tested dataset. 



Results (3)
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Relative error on final mass 1 (top) and final mass 2 
(bottom) in the initial masses plane

Number of events in the testing dataset with a relative error for predicted final 
masses within a given bin. Red lines are values where 67% (dotted), 95% 

(dashed) and 99.5% (solid) of the dataset are below. 



Summary
• MESA simulations describe with good precision physics behind the evolution of binary 

stars, giving a useful dataset to study progenitors. 

• Limit of the approach : fixed phase space and large computing time 

• ML based evolution model for black hole binaries in the  
mass range able to predict component mass with 20% accuracy. 

• Final orbital separation and merging time less accurate : median relative error of 90% and 
above 100% respectively. 

• Using Bayesian inference to retrieve statistics on progenitors for LIGO/Virgo detected low 
mass mergers events.

m1 ∈ [3,30] − m2 ∈ [3,40] M⊙
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BACK UP



Machine Learning project

13

The algorithm :
Learning set : Xl = {xl,i}i∈[1,n], Yl = {xl,i}i∈[1,n]

Validation set : Xv = {xv,i}i∈[1,n], Yv = {xv,i}i∈[1,n]

A RFR algorithm with B trees will simulate B 
 new datasets  of size n, 
using selection with replacement from the 
original dataset, and apply regression tree 
on the B new datasets.

(Xb, Yb)b∈[1,B]

Xl, Yl

X1, Y1 Xb, Yb XB, YB
. . .. . .

Y1 ≈ f1(X1) Yb ≈ fb(Xb) YB ≈ fB(XB)

̂f(Xv) =
1
B

B

∑
b=1

fb(Xv)

. . . . . .
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Schematic description of a Random Forest Regressor



BPS
• IBiS (Tutukov & Yungelson 1996, and 

references therein)  

• Brussels’ code (Vanbeveren et al. 1998a,b)  

• Scenario Machine (Lipunov et al. 1996, 2009) 

• SeBa (Portegies Zwart & Verbunt 1996; 
Toonen et al. 2012) 

• BSE (Hurley et al. 2002) 

• StarTrack (Belczynski et al. 2002, 2008) 

• PNS (De Donder & Vanbeveren 2004) 

• binary c (Izzard et al. 2004, 2006, 2009) 

• SEVN (Spera et al. 2015) 

• TRES (Toonen et al. 2016)  

• BPASS (Eldridge & Stanway 2016;  
Stanway et al. 2016; Eldridge et al. 2017; 
 Stanway & Eldridge 2018) 

• COMPAS (Stevenson et al. 2017;  
Riley et al. 2021) 

• ComBinE (Kruckow et al. 2018) 

• COSMIC (Breivik et al. 2020) 

• MOBSE (Giacobbo et al. 2018)



Binary Evolution Codes

• BINSTAR (Siess et al. 2013) 

• MESA (Paxton et al. 2011, 2013, 2015, 
2018, 2019) 

• BPASS (Eldridge & Stanway 2016; 
Stanway et al. 2016; 
Eldridge et al. 2017; 
Stanway & Eldridge 2018)

• Cambridge STARS code (Eggleton 1971; 
Pols et al. 1995;  
Eldridge & Tout 2004) 

• ev/STARS/TWIN (Pols et al.1995; 
Nelson & Eggleton 2001; 
Eggleton & Kiseleva-Eggleton 2002) 

• BEC (Heger et al. 2000; 
Heger & Langer 2000)



State of the art in massive binary 
simulations and inferences on progenitors

• BPS is a great tool to get a huge amount of 
binaries, spanning wide ranges of masses and 
separation in a reasonable computing time.

Binary Population Synthesis (BPS)

Schematic for the COSMIC BPS code. The evolution is made through a look-up table. Credits : Breivik et al. (2020)

• Parametric BPS (pBPS) use fitting formulae or look-up 
tables, but imply strong approximations for the binary 
systems.



State of the art in massive binary 
simulations and inferences on progenitors

• Detailed Binary Evolution codes are much 
more time consuming with ~10 — 100 CPU 
hours per simulation  (Paxton et al. 2019). 

• They account for more precise physics of the 
binary and are easily customizable.

Kippenham diagram of a 14 + 16 binary with 
a 3 days orbital period. Credits Paxton et al. 

(2017)

Detailed Binary Evolution (dBE)



State of the art in massive binary 
simulations and inferences on progenitors

• Statistics on merger rate density within the 
Hubble time. 

• Statistics on total population of DCO.

Predictions

DCO population produced by POSYDON. Credits Fragos et al. (2022)
Merger rate density of DCO. Credits 

Santoliquido et al. (2020)



Precision of the model and holes

Representation of a cut in the phase space. 
(z=0.015, β=0.4, αCE=2)Probability of having a merger in M1i/M2i plane





Posterior simulations
• 4984 have been done 998 mergers (within Hubble time) 

have been obtained 

• Different z and β tested  (log(z) ∈ {−2 ; − 3; − 4}; β ∈ {0.2 ; 0.4})

Final parameters histogram repartition. Color indicate β and z.
Initial vs final parameters for the simulations. Colors 

represent β and z



Changing the strat, populate smart

• High computational cost 

• Some areas have just holes that 
have to be filled

Some regions are less populated, leading to 
those oscillations in the merging rate density. 
(Red is what more simulations would look like)

Showing holes in the phase space



Comparisons with GWTC-2
• Given  LIGO/Virgo detections 

 

• Also given hyper-parameters θ, with prior p(θ), we 
have :

Nobs
{x} = {x1, . . . , xNobs

}

p(θ |{x}, Nobs) ∝ p({x}, Nobs |θ)p(θ)

• Which can be rewritten as :

p(θ |{x}, Nobs) ∝ p(θ)
Nobs

∏
i=1

∫ p(xi |θ, α)ppop(α |θ)dα

∫ pdet(α, θ)ppop(α |θ)dα



Number of events in the testing dataset with a relative error for predicted final orbital separation and 
merging time within a given bin. Red lines are values where 67% (dotted), 95% (dashed) and 99.5% 

(solid) of the dataset are below. Dashdot correspond to 50% (left), and 1% (right) 


