Spin-model comparison with GWTC-3 for isolated binary black holes

Carole Périgois

10 October 2022

Spin measurement and models

\vec{S}_{2}

Measurements

Spin-related quantities

$$\chi_{ ext{eff}} = rac{\left(ec{\chi_1} + q\,ec{\chi_2}
ight)}{1+q}\cdotrac{ec{L}}{L},$$

$$\chi_{\rm p} = \max (\chi_{1,\perp}, A \chi_{2,\perp}), A = \frac{4 q + 3}{4 + 3 q}$$

- $\bullet\,$ Mass-related quantities $\mathcal{M}_{\rm c}, \textit{q}$
- Redshift z

Angular momentum transportation

- Transportation from the core of a star to outer layers.
- The angular momentum of the core is conserved during core-collapse/supernovae and become the BH spin χ

Astrophysical Models

Angular momentum transportation models

Geneva (G)

- No magnetic field
- Z dependent
- Large χ

distributions

MESA (M)

- Include Taylor-Spruit dynamo
- Z dependent
- $\bullet \ {\rm Low} \ \chi$

Fuller&Ma (F)

- More efficient dynamo
- Z independent
- Lower χ

Belczykski et al., 2010, ApJ

Tidal Spin-up **B_21**

- Tidal effect between BH-WR.
- Increase the angular momentum of the WR.
- Allow higher spins.

Bavera et al., 2021, A&A

Astrophysical Models

Angular momentum transp	gular momentum transportation models			
Geneva (G/G_B21)	MESA (M/M_B21)	Fuller&Ma (F/F₋B21)		
 No magnetic field 	Include	 More efficient 		
• Z dependent	Taylor-Spruit dynamo	dynamo		
• Large χ	• Z dependent	 Z independent 		

distributions

• \angle depe

• Lower χ

Natal kicks

Kicks of the remnant compact object during early SN phase due to asymmetric mass ejection

- σ150, σ265 : Maxwellian distributions
- GM20 :

Mass dependant

Giacobbo & Mapelli, 2019, MNRAS

Golden events

• $FAR < 0.25 yr^{-1}$

•
$$p_{\mathrm{astro}}^{\mathrm{BBH}} > 0.9$$

Max - Max_B21

Toy model Spin picked in Maxwellian distribution with $\sigma = 0.1$, truncated at 1.

Kicks:

 $\begin{array}{l} \sigma \mathbf{265} \sim \mathrm{GM20} \\ \sigma \mathbf{265} > \sigma \mathbf{150} \end{array}$

Kicks: $\sigma 265 \sim GM20$ $\sigma 265 > \sigma 150$ **Geneva**: (G) is not doing well Too large distributions

Kicks: $\sigma 265 \sim GM20$ $\sigma 265 > \sigma 150$

Geneva: (G) is not doing well Too large distributions

WR mechanism: (M) and (F) good only including WR mechanism (M_B21, F_B21)

Kicks: σ 265 ~ GM20 σ 265 > σ 150 **Geneva**: (G) is not doing well Too large distributions WR mechanism: (M) and (F) good only including WR mechanism (M_B21, F_B21)

 $\chi_{\rm p}$ shows large distributions, what is its impact on the study?

Impact of $\chi_{ m p}$

- Gravitational waves measurement allow to exclude high efficiency angular momentum.
- The measurement of χ_p is relevant for angular momentum understanding.
- Public version of the code will be soon released.

Thank you for your attention :)

Spin distributions

Table: Log-likelihood	estimated with	n merger	parameters
$\theta = \left\{ \mathcal{M}_{c}, z, \chi_{eff} \right\}$	$(, \chi_{\mathrm{P}})$		

Table: Log-likelihood estimated with merger parameters $\theta = \{\mathcal{M}_{c}, z, \chi_{eff} q\}$

Model Name	GM20	σ 150	σ 265	Model Name	GM20	σ 150	σ 265
G	149	-1	145	G	146	35	147
G_B21	150	-12	141	G_B21	149	47	154
Μ	162	0	171	Μ	192	141	190
M_B21	232	36	232	M_B21	199	130	180
F	-∞	-∞	-∞	F	146	85	138
F_B21	250	88	242	F_B21	207	185	180
Max	255	92	254	Max	208	161	155
Max_B21	257	106	250	Max_B21	206	160	200