GW and EM observations of neutron stars to constrain dense matter

Sebastien Guillot

Institut de Recherche en Astrophysique et Planétologie

Quter Crust

Inner Crust

Outer Core

astrophysique & planéto

Prologue: The internal structure of neutron stars is still unknown and numerous theories are proposed, with important implications for (astro)physics.

Prologue: Understanding dense matter requires determining the equation of state beyond nuclear density.

Lattimer and Prakash 2001

GW observations of neutron stars to constrain dense matter

GW 170817

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

In addition to the masses, the gravitational wave signals hides information about the tidal deformability (and therefore on the neutron star radii).

In addition to the masses, the gravitational wave signals hides information about the tidal deformability (and therefore on the neutron star radii).

EM observations of neutron stars to constrain dense matter

Measuring neutron star masses and radii

Radio pulsars (in binary systems) provide the most precise measurements of neutron stars masses.

Credits: A. Bilous

Radio timing of pulsars in binary systems permits measurements of orbital parameters.

Monitoring of binary pulsars results in precise determination of Keplerian parameters.

Measured Orbital Parameters for PSR B1913+16

Long term monitoring of binary pulsars results in precise determination of "post-Keplerian" parameters.

Double-NS system PSR B1913+16 Best M_{NS} measurement $M_{PSR} = 1.4414 \pm 0.0002 M_{\odot}$

Weisberg et al. 2005

Measurements of the mass M_{NS} exist, but only the highest M_{NS} brings new constraints.

Demorest et al. 2010 Antoniadis et al. 2013 Cromartie et al. 2019

X-ray emitting neutrons stars and X-ray pulsars can provide measurements of neutron stars radii.

Credits: A. Bilous

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

The Neutron star Interior Composition ExploreR

NICER has accumulated weeks of continuous data on several key pulsars to attain unprecedented signal-to-noise data.

NS properties inference (Likelihood statistical sampling)

Mass,

Radius,

PSR J0030+0451: The preferred model consists in a small circular spot and an elongated crescent.

PSR J0030+0451: In addition to the unexpected geometry, we also constrained M_{NS} and R_{NS}.

 $R_{NS} = 12.7 \pm 1.2$ km $M_{NS} = 1.34 \pm 0.16 M_{\odot}$

> *Riley, …, SG et al. (2019) See also Miller, …, SG et al. (2019)*

PSR J0740+6620: The simplest model is a good description of the data.

Riley, …, SG et al. (2021)

The M-R constraints from PSR J0740+6620 are useful thanks to its independently measured high mass.

See also Miller, …, SG et al. (2021)

GW and EM observations of neutron stars to constrain dense matter

Combining GW and EM constraints

The NICER results for these two pulsars bring some additional constraints on equation of state models. $\frac{1}{2}$ $\frac{$

PSR J0030+0451 brings little additional information on EoSs parametrization (polytropes)

Nucl. Phys. + GW170817

PSR J0740+6620 adds some improvement on the EoSs models, thanks to its high mass.

+ mass of PSR J0740

+ PSR J0740

Different approaches use different ways to model the equation of state.

Dinh Thi et al. (2021)

Meta-modelling of the EOS *Margueron et al. (2018)*

Taylor expansion of the energy density around e_{sat}

Epilogue:

What's the future of astrophysical constraints on the EOS

Future LVK runs will detect more NS-NS mergers.

The next generation of GW interferometers will then permit studies with large populations of NS-NS mergers.

There are analyses of NICER pulsars in progress with upcoming M_{NS} and R_{NS} measurements.

Future X-ray missions will also enable M_{NS} and R_{NS} measurements for a few tens of neutron stars.

eXTP (~2028)

- Modest imaging capabilities (60" PSF)
- \sim 4–5 \times more sensitive than NICER
- \rightarrow + Hard X-ray instrument

ATHENA ? (~2035)

- ✦ Good imaging capabilities (5–10" PSF)
- $\star \sim 5{\text -}10$ x more sensitive than NICER
- \div 10 µs time resolution

While more measurements will improve the constraints on the EOS, the quality of the measurement is really key.

CompARE: An upcoming repository for MNS, R_{NS}, **Λ**_{NS} measurements.

- **• Facilitate the interaction between observers and nuclear physicists / modellers**
- Offer a uniform/unified repository of M-R or M-∆ constraints from NS and NS-NS mergers
- **• Stay as close as possible to the astrophysical data, free of EOS pre-modelling**
- **• Offer easy conversions from the different type of inputs (MCMC samples, posteriors, …)**
- **• In the long term, encourage the observer community to provide their full posteriors**

Conclusion

Many M_{NS}-R_{NS} measurements are necessary to truly constrain the equation of state, and to be sensitive to possible phase transitions.

Constraining the NICER background will be key for robust M-R measurements.

Sources of background:

- Instrumental background
- Particle background
- Cosmic Xray background
- Nearby sources

Wolff, SG et al 2021

There are still several pulsars observed by NICER to analyse. 32000 31800 31600 **PSR J1614-2230** 31400 *Wolff, SG et al. 2021*

Known high mass: $M = 1.908 \pm 0.016$ Msun

Phase

PSR J0636+5129