<u>GW and EM observations of neutron</u> <u>stars to constrain dense matter</u>

Sebastien Guillot

Institut de Recherche en Astrophysique et Planétologie

Outer Crust

Inner Crust

Outer Cor

astrophysique & planetol

<u>Prologue</u>: The internal structure of neutron stars is still unknown and numerous theories are proposed, with important implications for (astro)physics.

Prologue: Understanding dense matter requires determining the equation of state beyond nuclear density.

Lattimer and Prakash 2001

<u>GW observations of neutron stars</u> <u>to constrain dense matter</u>

GW 170817

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

In addition to the masses, the gravitational wave signals hides information about the tidal deformability (and therefore on the neutron star radii).

In addition to the masses, the gravitational wave signals hides information about the tidal deformability (and therefore on the neutron star radii).

EM observations of neutron stars to constrain dense matter

Measuring neutron star masses and radii

Radio pulsars (in binary systems) provide the most precise measurements of neutron stars masses.

Credits: A. Bilous

Radio timing of pulsars in binary systems permits measurements of orbital parameters.

Monitoring of binary pulsars results in precise determination of Keplerian parameters.

Measured Orbital Parameters for PSR B1913+16

Fitted Parameter	Value	
$a_p \sin i$ (s)	2.3417725(8)	pa
e	0.6171338(4)	ep
T_0 (MJD)	52144.90097844 (5)	m
P_b (d)	0.322997448930(4)	ria
$\omega_0 \; (\mathrm{deg}) \; \ldots \; \ldots$	292.54487 (8)	nn Prs

Long term monitoring of binary pulsars results in precise determination of "post-Keplerian" parameters.

Double-NS system PSR B1913+16 Best M_{NS} measurement $M_{PSR} = 1.4414 \pm 0.0002 M_{\odot}$

Weisberg et al. 2005

Measurements of the mass M_{NS} exist, but only the highest M_{NS} brings new constraints.

Demorest et al. 2010 Antoniadis et al. 2013 Cromartie et al. 2019

X-ray emitting neutrons stars and X-ray pulsars can provide measurements of neutron stars radii.

Credits: A. Bilous

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

Strong gravity permits seeing beyond the hemisphere of the neutron star.

Credits: S. Morsink / NASA

The Neutron star Interior Composition ExploreR

NICER has accumulated weeks of continuous data on several key pulsars to attain unprecedented signal-to-noise data.

Target	Total observing time	
PSR J0030	3.6 Msec	41 days
PSR J0740	2.9 Msec	33 days
PSR J1231	2.9 Msec	33 days
PSR J0437	2.6 Msec	32 days
PSR J2124	1.9 Msec	22 days
PSR J0614	1.1 Msec	12 days
PSR J1614	1.0 Msec	11 days

NS properties inference (Likelihood statistical sampling)

Eccentric

Concentric

Protruding

PSR J0030+0451: The preferred model consists in a small circular spot and an elongated crescent.

<u>PSR J0030+0451</u>: In addition to the unexpected geometry, we also constrained M_{NS} and R_{NS}.

$R_{NS} = 12.7 \pm 1.2 \text{ km}$ $M_{NS} = 1.34 \pm 0.16 \text{ M}_{\odot}$

Riley, ..., SG et al. (2019) *See also Miller, ..., SG et al.* (2019)

PSR J0740+6620: The simplest model is a good description of the data.

Riley, …, SG et al. (2021)

The M-R constraints from PSR J0740+6620 are useful thanks to its independently measured high mass.

See also Miller, ..., SG et al. (2021)

<u>GW and EM observations of neutron</u> <u>stars to constrain dense matter</u>

Combining GW and EM constraints

The NICER results for these two pulsars bring some additional constraints on equation of state models.

<u>PSR J0030+0451</u> brings little additional information on EoSs parametrization (polytropes)

•••••• Nucl. Phys. + GW170817

<u>PSR J0740+6620</u> adds some improvement on the EoSs models, thanks to its high mass.

---- + mass of PSR J0740

+ **PSR J0740**

Different approaches use different ways to model the equation of state.

Dinh Thi et al. (2021)

<u>of the EOS</u> Margueron et al. (2018)

Meta-modelling

Taylor expansion of the energy density around e_{sat}

Epilogue:

What's the future of astrophysical constraints on the EOS

Future LVK runs will detect more NS-NS mergers.

The next generation of GW interferometers will then permit studies with large populations of NS-NS mergers.

There are analyses of NICER pulsars in progress with upcoming M_{NS} and R_{NS} measurements.

Target	Total time	
PSR J0030	3.6 Msec	
PSR J0740	2.9 Msec	2.5-
PSR J1231	2.9 Msec	<u><u><u>o</u> 2.0-</u></u>
PSR J0437	2.6 Msec	2 Sg 1.5
PSR J2124	1.9 Msec	Σ 10-
PSR J0614	1.1 Msec	
PSR J1614	1.0 Msec	8 10 12 14 1 Radius (km)

Future X-ray missions will also enable M_{NS} and R_{NS} measurements for a few tens of neutron stars.

eXTP (~2028)

- Modest imaging capabilities (60" PSF)
- + Hard X-ray instrument

ATHENA ? (~2035)

- ♦ Good imaging capabilities (5–10" PSF)
- 10 µs time resolution

While more measurements will improve the constraints on the EOS, the quality of the measurement is really key.

<u>CompARE</u> : An upcoming repository for M_{NS} , R_{NS} , Λ_{NS} measurements.

- Facilitate the interaction between observers and nuclear physicists / modellers
- Offer a uniform/unified repository of M-R or M- Λ constraints from NS and NS-NS mergers
- Stay as close as possible to the astrophysical data, free of EOS pre-modelling
- Offer easy conversions from the different type of inputs (MCMC samples, posteriors, ...)
- In the long term, encourage the observer community to provide their full posteriors

Conclusion

Many M_{NS} - R_{NS} measurements are necessary to truly constrain the equation of state, and to be sensitive to possible phase transitions.

Constraining the NICER background will be key for robust M-R measurements.

Sources of background:

- Instrumental background
- Particle background
- Cosmic Xray background
- Nearby sources

Wolff, SG et al 2021

There are still several pulsars observed by NICER to analyse.

PSR J1614-2230 Wolff, SG et al. 2021

Known high mass: M = 1.908±0.016 Msun

PSR J0636+5129