

Multimessenger prospects for massive black hole binaries in LISA

Alberto Mangiagli

Collaborators: Marta Volonteri, Chiara Caprini, Sylvain Marsat, Susanna Vergani, Nicola Tamanini, Henri Inchauspé, Lorenzo Speri

Laboratoire Astroparticule et Cosmologie (APC)

Massive black hole binaries (MBHBs)

$$MBH \sim 10^{5-7}\,M_\odot$$

We currently believe that MBHs are hosted at the center of galaxies

When two galaxies merge, the MBHs in their center form a binary and, eventually, merge emitting gravitational waves (GWs) Why MBHBs?

The importance of MBHBs

Astrophysics

Constrain MBHBs formation and evolution scenarios

Multi-messenger

Formation of X-ray corona and jet around newly formed horizons

Cosmology

Testing the expansion rate of the Universe

Observing the entire Universe with GWs

A realistic population of MBHBs

How many counterparts do we expect over LISA time mission? (AM+2207.10678)

Estimate the number of EM counterparts over LISA time mission and cosmological parameters

Key improvements respect to previous works

Improve the modeling of the EM counterpart (Tamanini+16)

 \blacktriangleright Bayesian parameter estimation for GW signal (Marsat+20) \rightarrow expensive but realistic

Starting point

Semi-analytical models: tools to construct MBHBs catalogs (Barausse+12)

Modeling the EM emission

Observing strategies

Optical

LSST, VRO

- Identification+redshift
- > Deep as $m \sim 27.5$
- \blacktriangleright FOV $\sim 10 \, deg^2$

F	Radio	
S	KA	

- Only identification
- \blacktriangleright Deep as $F \sim 1 \, \mu {
 m Jy}$
- $\blacktriangleright \ FOV \sim 10 \, deg^2$
- Redshift with ELT
- Flare+Jet emission

- X-ray *Athena*
 - Only identification
 - > Deep as $F_X \sim 3 \times 10^{-17} \text{ erg/s/cm}^2$
 - \blacktriangleright FOV $\sim 0.4 \, deg^2$
 - Redshift with ELT
 - > Accretion from catalog or Eddington

Additional variations

AGN obscuration (Ueda+14, Gnedin+07)

- Affect LSST/VRO and Athena
- Typical hydrogen column density distribution

Radio Jet (Cohen+06)

- Affect SKA
- Assume a jet opening angle of ~ 30° (Yuan+21)

Two main scenarios

Procedure

We focus on two scenarios

Maximising

- AGN obscuration neglected
- Isotropic radio emission
- Eddington accretion for X-ray emission

Minimising

- AGN obscuration included
- > Collimated radio emission with $\theta \sim 30^{\circ}$
- Catalog accretion for X-ray emission

Redshift and total mass distributions

7/11

Redshift and total mass distributions

7/11

Redshift and total mass distributions

7/11

EMcps in optical, X-ray and radio

EMcp rates in 4 yr

(In 4 yr)	LSST, VRO	SKA+ELT		Athen	a+ELT		
		Isotropic	A 30°	30° $\theta \sim 6^{\circ}$	Catalog	Eddington	
			$v \sim 30$		$F_{X, lim} = 4e-17$	$F_{X, lim} = 4e-17$	
	$\Delta\Omega=10{ m deg^2}$			$\Delta\Omega=0.4\text{deg}^2$	$\Delta\Omega=0.4\text{deg}^2$		
No-obsc.	0.84	6.8	1.51	0.04	0.49	1.02	Light
	3.07	14.9	2.71	0.04	2.67	3.87	Heavy
	0.53	20.6	3.2	0.04	0.58	4.4	Heavy-no-delays
Obsc.	0.27	6.8	1.51	0.04	0.04	0.37	Light
	0.84	14.9	2.71	0.04	0.22	0.18	Heavy
	0.22	20.6	3.2	0.04	0.09	0.4	Heavy-no-delays

- Dramatic decrease with obscuaration and radio jet
- Parameter estimation selects preferentially *heavy*

(In 4 yr)	Maximising	Minimising
Light	6.8	1.7
Heavy	14.9	3.4
Heavy-no-delays	20.9	3.4

Combine the luminosity distance and redshift uncertainty to constrain cosmological parameters (still preliminary)

No instruments will provide estimates at high redshift (+ no calibration errors)

 H_0 can be constrained to few percent Larger uncertainties on Ω_m

Conclusions

Estimating the number of counterpart for MBHB mergers in LISA

- Most sources are faint
- \succ Obscuration and collimated radio emission decrease the counterpart rates by $\sim 75\%$
- > Few events \Rightarrow we need accuratly planned follow-up strategy

For cosmology

- > At the end, we expect $\Delta H_0 \sim 10\%$ with only MBHBs
- Worst results than previous studies but better modeling of the EM counterpart and more realistic GW parameter estimation
- We can combine MBHBs with stellar BHBs and EMRIs

MBHBs multi-messenger will be challenging!

Conclusions

Estimating the number of counterpart for MBHB mergers in LISA

- > Most sources are faint
- \succ Obscuration and collimated radio emission decrease the counterpart rates by $\sim 75\%$
- > Few events \Rightarrow we need accuratly planned follow-up strategy

For cosmology

- > At the end, we expect $\Delta H_0 \sim 10\%$ with only MBHBs
- Worst results than previous studies but better modeling of the EM counterpart and more realistic GW parameter estimation
- We can combine MBHBs with stellar BHBs and EMRIs

MBHBs multi-messenger will be challenging!

Thanks! Any questions?

Backup slides

Seed BHs formation channels

The physics of the semi-analytical model

Multi-messenger in practice

Last parsec problem

GW sources in LISA band

- Strong and long-lasting signals
- \blacktriangleright Strong overlap between signals from different sources \rightarrow Global fit approach
- > Unexplored parameter space → Large unceratainty on rate & sources' properties

Number of detected events in 4 yr

	Total catalog	SNR > 10
Light	690.9	129.3
Heavy	30.7	30.4
Heavy-no-delays	475.5	471.1

GW parameter estimation

For multimessenger candidates, we use *lisabeta* (Marsat+2021) for parameter estimation

- ► MCMC formalism
- Include both low- and high-frequency LISA response
- Tested with independent codes

SNR and mass ratio distributions

Redshift and total mass distributions for Athena

Redshift and total mass distributions for each strategy

Distribution of X-ray fluxes

EMcps in X-ray (No obscuration) with Athena

"Multimodal" LISA events

Systems with multimodal sky posterior distribution from LISA data analysis

Arise from LISA degeneracy pattern function

Might pose issues for the search of the EM counterpart + problematic also for the dark sirens approach

- > 1mode systems are the vast majority
- > 2mode systems appear at high mass and high redshift
- Still large spread across sub-populations

What about multimodal events?

Focus only on the true binary spot

Modes probability

Contribution to the expected rate in 4 yr

	1mode	2modes	8modes
Light	6.3	0.36	0.13
Heavy	10.7	3.9	0.2
Heavy-nd	16.4	3.5	0.4

- 2modes have always one mode more probable than the other
- 8modes provides < 1 counterparts in the entire mission

Multimodal events does not affect (significantly) counterpart estimates

Probability for 8modes systems

Luminosity distance and redshift estimates

Luminosity distance

- > Accurate estimate of luminosity distance $\rightarrow \frac{\Delta d_l}{d_l} < 10\%$
- > Lensing relevant for $z \gtrsim 2-3$
- Peculiar velocities are negligible

Redshift measurements

LSST/VRO

Photometric measurements with $\Delta z = 0.03(1 + z)$ (Laigle + 19)

Galaxies in LISA error boxes

