

Predicting GW candidates source properties in low-latency with MBTA during O4

Dimitri Estevez

Postdoctoral researcher at Université de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France

Gravitational wave observations timeline

- Number of detections keeps increasing
 - \rightarrow During O4 we expect \sim O(3*N₀₃) GW candidates
 - \rightarrow Provide information to help astronomers to decide to follow-up or not (EM, neutrinos, ...)
 - Benefit from developments made for the catalogs

Multi-Band Template Analysis (MBTA) in the low-latency chain

Low-latency chain:

MBTA search pipeline: Adams et al. 2016, Aubin et al. 2021

- Matched filtering based search
- Require banks of waveform templates
- Candidates are searched in coincidence between at least two detectors
 - Will also provide single-detector candidates in O4
- Assess the significance of triggers (false alarm rate, probability of astrophysical origin...)

GCN/LVC NOTICE content during O3 (similar in O4)

Example for th	the Binary Neutron Star GW190425	
https://gcn.gsfc.nasa //////TITLE: NOTICE_DATE: NOTICE_TYPE: TRIGGER_NUM: TRIGGER_DATE: TRIGGER_TIME: SEQUENCE_NUM: GROUP_TYPE: SEARCH_TYPE: PIPELINE_TYPE:	asa.gov/notices_I/S190425z.lvc ////////////////////////////////////	ble (NSBH) Binary Black Hole (BBH)
FAR: PROB_NS: PROB_REMNANT: PROB_BNS: PROB_NSBH: PROB_BBH: PROB_MassGap: PROB_TERRES: TRIGGER_TD:	4 - 031LAL 4.538e-13 [Hz] (one per 25502705.6 days) (one per 69870.43 years) 1.00 [range is 0.0-1.0] 0.99 [range is 0.0-1.0] 0.00 [range is 0.0-1.0]	ers: e numbers mean? otions/limitations?
MISC: SKYMAP_FITS_URL: EVENTPAGE_URL: COMMENTS: COMMENTS:	0x189E806 L: https://gracedb.ligo.org/api/superevents/S190425z/files/bayestar.fits.gz https://gracedb.ligo.org/superevents/S190425z/view/ LVC Super Initial Skymap a location probability map. This event is an OpenAlert.	

Binary Neutron Star (BNS)

Assessing the nature of a GW candidate with MBTA: $p_{astro} = p_{BNS} + p_{NSBH} + p_{BBH}$

Probability of astrophysical origin:

- Jointly estimated with source membership probabilities { p_{BNS}; p_{NSBH}; p_{BBH} }
- $p_{astro} = p_{BNS} + p_{NSBH} + p_{BBH} = 1 p_{noise}$

Need to assume some population models (MBTA example from O3)

	Mass distribution	$\begin{array}{c} \text{Mass} \\ \text{range} \ (M_{\odot}) \end{array}$	Spin range	Spin orientations	Redshift evolution	Maximum redshift
BBH (pop)	Power Law + Peak	$5 < m_1 < 80$ $5 < m_2 < 80$	$ \chi_{1,2} < 0.998$	isotropic	$\kappa = 0$	1.9
NSBH	$p(m_1) \propto m_1^{-2.35}$ uniform	$\begin{array}{c} 2.5 < m_1 < 60 \\ 1 < m_2 < 2.5 \end{array}$	$\begin{aligned} \chi_1 < 0.998\\ \chi_2 < 0.4 \end{aligned}$	isotropic	$\kappa = 0$	0.25
BNS	uniform	$\begin{array}{l} 1 < m_1 < 2.5 \\ 1 < m_2 < 2.5 \end{array}$	$ \chi_{1,2} < 0.4$	isotropic	$\kappa = 0$	0.15

Search pipelines accurately estimate chirp mass but not individual masses!

Source properties of GW candidates with MBTA: p_{NS}, p_{REMNANT}

- In MBTA for O4, plan to construct p_{NS} and $p_{REMNANT}$ as: $p_{NS} = (p_{BNS} + p_{NSBH}) / p_{astro}$ $p_{REMNANT} = (p_{BNS} + p_{NSBH, bright}) / p_{astro}$
- NSBH can be EM bright or dark
 - Depends on compactness (from EOS), mass ratio and BH spin
 - → Foucart 2012, Stone at al. 2013, Pannarale et al. 2014, Foucart et al. 2018
 - → During O3, p_{REMNANT} common to all pipelines: *Chatterjee et al. 2020*
 - Conservative stiff EOS (2H with m_{NS max}=2.83 M_o)
 - \rightarrow less compact \rightarrow easier to disrupt
 - For O4, new pipeline-specific method for MBTA

Example: splitting NSBH population on remnant mass with 2H EOS

Effect of EOS choice on NSBH brightness

Marginalization over EOS posterior from observations

Add information on NS population using EOS from combined measurements of PSR + GW + X-ray:

- 10 000 EOS posterior samples
- Consider NSBH if component masses allowed by EOS
- Compute NSBH remnant mass: Foucart et al. 2018
- Consider EM-bright-NSBH if $M_{rem} > 0.01 M_{\odot}$
- Consider BNS if component masses allowed by EOS

GdR OG - Toulouse - October 2022

Source properties as a function of detected chirp mass

$$p_{NS} = (p_{BNS} + p_{NSBH}) / p_{astro}$$
$$p_{REMNANT} = (p_{BNS} + p_{NSBH, bright}) / p_{astro}$$

- MBTA will compute p_{astro}, source classification and properties for O4 with:
 - Detailed population models:
 - NS population using a large set of EOS inferred from GW+PSR+X-Ray results
 - Foucart fitting formula for NSBH "bright" / "dark" classification with EOS marginalization
 - Latest BBH population model from LVK
 - Population recovery and background estimation specific to MBTA
 - Parameterization of those quantities
 - Allows for a ~0s latency production