Recent Progress in Waveform Modelling using Perturbation Theory

Andrew Spiers (he/him)

University of Nottingham

11th October 2022

Overview

[B.P. Abbott et al. Phys. Rev. Lett., 119(16):161101, 2017]

• Want to solve $G_{ab}[\mathbf{g}_{cd}] = T_{ab}$

- Want to solve $G_{ab}[\mathbf{g}_{cd}] = T_{ab}$
- **But**, G_{ab} is non-linear in \mathbf{g}_{cd} .

•
$$
\mathbf{g}_{ab} = g_{ab}^{(0)} + \varepsilon h_{ab}^{(1)} + \varepsilon^2 h_{ab}^{(2)} + \dots + \varepsilon^n h_{ab}^{(n)} + \dots
$$

where $|\varepsilon| \ll 1$ and $G_{ab}[g^{(0)}_{cd}]=0$

•
$$
\mathbf{g}_{ab} = g_{ab}^{(0)} + \varepsilon h_{ab}^{(1)} + \varepsilon^2 h_{ab}^{(2)} + \dots + \varepsilon^n h_{ab}^{(n)} + \dots
$$

where $|\varepsilon| \ll 1$ and $G_{ab}[g^{(0)}_{cd}]=0$

•
$$
G_{ab}[\mathbf{g}_{ab}] \Rightarrow \delta G_{ab}[\varepsilon h_{ab}^{(1)} + \varepsilon^2 h_{ab}^{(2)} + \ldots]
$$

+ $\delta^2 G_{ab}[\varepsilon h_{ab}^{(1)} + \varepsilon^2 h_{ab}^{(2)} + \ldots, \varepsilon h_{ab}^{(1)} + \varepsilon^2 h_{ab}^{(2)} + \ldots] + \ldots$

$$
\varepsilon \delta G_{ab}[h_{ab}^{(1)}] + \varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] + \varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]
$$

= $\varepsilon T_{ab}^{(1)} + \varepsilon^2 T_{ab}^{(2)} + \mathcal{O}(\varepsilon^3),$

$$
\varepsilon \delta G_{ab}[h_{ab}^{(1)}] + \varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] + \varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]
$$

= $\varepsilon T_{ab}^{(1)} + \varepsilon^2 T_{ab}^{(2)} + \mathcal{O}(\varepsilon^3),$

$$
\Rightarrow \varepsilon \delta G_{ab}[h_{ab}^{(1)}] = \varepsilon T_{ab}^{(1)}
$$

 $\varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = \varepsilon^2 T_{ab}^{(2)} - \varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]$

$$
\varepsilon^3 \delta G_{ab}[h_{ab}^{(3)}] = \dots
$$

Approximating the spacetime

$$
\mathbf{g}_{ab} = g_{ab}^{(0)} + \varepsilon h_{ab}^{(1)} + \varepsilon^2 h_{ab}^{(2)} + \mathcal{O}(\varepsilon^3)
$$

[NASA website]

• Solutions?

 $\mathsf{Vacuum}, \ \varepsilon \delta G[h_{ab}^{(1)}] = 0$

• Solutions?

 $\mathsf{Vacuum}, \ \varepsilon \delta G[h_{ab}^{(1)}] = 0$ Appropriate boundary conditions

• Solutions?

 $\mathsf{Vacuum}, \ \varepsilon \delta G[h_{ab}^{(1)}] = 0$ Appropriate boundary conditions

⇒ Gravitational waves ∼ *e* −*iωt*

• Solutions?

 $\mathsf{Vacuum}, \ \varepsilon \delta G[h_{ab}^{(1)}] = 0$ Appropriate boundary conditions

- ⇒ Gravitational waves ∼ *e* −*iωt*
- \Rightarrow Dissipating energy \Rightarrow Im[ω] \neq 0

• Solutions?

 $\mathsf{Vacuum}, \ \varepsilon \delta G[h_{ab}^{(1)}] = 0$ Appropriate boundary conditions

- ⇒ Gravitational waves ∼ *e* −*iωt*
- \Rightarrow Dissipating energy \Rightarrow Im[ω] \neq 0
- \Rightarrow Discrete set of quasi-normal mode frequencies *ωn,l,m*

[Chandrasekhar & Detweiler, https://doi.org/10.1098/rspa.1975.0112]

• Solutions?

• Solutions?

 $\varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = -\varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]$

• Solutions?

 $\varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = -\varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]$ Appropriate boundary conditions

• Solutions?

 $\varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = -\varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]$ Appropriate boundary conditions

• Solutions?

 $\varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = -\varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]$ Appropriate boundary conditions

- \Rightarrow Homogeneous solutions: $\omega = \omega_{n,lm}$
- \Rightarrow Particular solutions $\omega = \omega_{n_1, l_1, m_1} + \omega_{n_2, l_2, m_2}$

• Solutions?

 $\varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = -\varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]$ Appropriate boundary conditions

- \Rightarrow Homogeneous solutions: $\omega = \omega_{n,lm}$
- \Rightarrow Particular solutions $\omega = \omega_{n_1, l_1, m_1} + \omega_{n_2, l_2, m_2}$

Some of these unique frequencies will be detectable!

[Cheung, et al.arXiv:2208.07374.] [Mitman, et al. arXiv:2208.07380.] [Lagos and Hui. arXiv:2208.07379.]

How important are the particular solutions

[Mitman, et al. arXiv:2208.07380.]

Extreme-Mass-Ratio Inspirals

LISA will be sensitive to Extreme-Mass-Ratio Inspirals

[Source: NASA, http://lisa.jpl.nasa.gov/gallery/lisa-waves.html.]

Extreme-Mass-Ratio Inspirals

[Source: NASA, http://lisa.jpl.nasa.gov/gallery/lisa-waves.html.]

LISA will be sensitive to Extreme-Mass-Ratio Inspirals

Multi-year long measurements with space-filling orbits:

- **Precise** measurements
- Potential world leading tests of General Relativity

Perterbation theory for Extreme-Mass-Ratio Inspirals

Expansion Parameter: *ε* ∼ *m M*

Binary mechanics: Gravitational **self-force**

[Source: NASA website]

$$
ma^{\alpha} = \varepsilon F_{(1)diss}^{\mu}[h_{ab}^{(1)}] + \varepsilon^2 F_{(1)cons}^{\mu}[h_{ab}^{(1)}] + \varepsilon^2 F_{(2)diss}^{\mu}[h_{ab}^{(2)}] + \mathcal{O}(\varepsilon^3)
$$

Matched asymptotic expansions

[Barack & Pound. Reports on Progress in Physics 82.1 (2018): 016904.]

Singular fields in self-force

[Pound. Springer, Cham, 2015. 399-486.]

Singular fields in self-force

[Pound. Springer, Cham, 2015. 399-486.]

The regular part of the field $\left(h_{ab}^R = h_{ab} - h_{ab}^S \right)$ provides the self-force $\left(F^{\mu}[h_{ab}^{R}]\right)$

[Detweiler & Whiting. PRD 67.2 (2003): 024025.]

Challenges at second order

$$
\text{Solving } \varepsilon^2 \delta G_{ab}[h_{ab}^{(2)}] = \varepsilon^2 T_{ab}^{(2)} - \varepsilon^2 \delta^2 G_{ab}[h_{ab}^{(1)}, h_{ab}^{(1)}]
$$

Challenges at second order

$$
\text{Solving} \ \varepsilon^2 \delta G_{ab}[h^{(2)}_{ab}] = \varepsilon^2 T^{(2)}_{ab} - \varepsilon^2 \delta^2 G_{ab}[h^{(1)}_{ab},h^{(1)}_{ab}]
$$

Second-order self-force waveforms (Schwarzschild)

[Wardell, et al. arXiv:2112.12265.]

Second-order self-force waveforms (Schwarzschild)

[Wardell, et al. arXiv:2112.12265.]

• Extension to Kerr

- Extension to Kerr
- Extension to eccentric and inclined orbits

- Extension to Kerr
- Extension to eccentric and inclined orbits
- Include resonances and secondary spin

- Extension to Kerr
- Extension to eccentric and inclined orbits
- Include resonances and secondary spin
- Beyond GR and astrophysical effects

- • Extension to Kerr
- Extension to eccentric and inclined orbits
- Include resonances and secondary spin
- Beyond GR and astrophysical effects

Thank you for listening (email: a.r.c.spiers@nottingham.ac.uk)