

CMOS pixel sensors for high precision vertex detectors

Rita De Masi

IPHC-Strasbourg

- Physics motivations.
- CMOS principle of operation and performances.
- MIMOSA-26 and its applications.
- System integration.
- Developments.
- Summary and conclusions.

The International Linear Collider

Goals

- Higgs physics: quantum numbers, couplings, rare decays.
- New particles production.
- Extended sensitivity via loop effects.
- $e^+ e^-$ linear collider
- Clean initial and final state.
- (Relatively) low background.
- Center of mass energy up to \sim 1 TeV.
- Superconducting RF technology.
- ~ 31 km long.
- L = 2 x 10³⁴ cm⁻² s⁻¹.
- R&D started more than 10 years ago.
- Physics after 2020.
- Next milestone: Detector Baseline Design report in 2012.

Seminaire du LPNHE

The International Linear Collider

Seminaire du LPNHE

The ILD concept

Detector issues

- Particle flow
 - Granular calorimeter
 - "Light" tracker
- Excellent tracking and vertexing.
 - $\sigma_{IP} = 5\mu m \oplus 10\mu m \text{ GeV} / \text{psin}^{3/2} \theta$
 - δp/p = 5 x 10⁻⁵.

Particle flow in a nutshell:

- reconstruction of single particles in a jet;
- charged particle with tracker;
- photons with ECAL;
- neutrons with HCAL.

The ILD concept

Detector issues

- Particle flow
 - Granular calorimeter
 - "Light" tracker
- Excellent tracking and vertexing.
 - $\sigma_{IP} = 5\mu m \oplus 10\mu m \text{ GeV} / \text{psin}^{3/2} \theta$
 - $\delta p/p = 5 \times 10^{-5}$.

Particle flow in a nutshell:

- reconstruction of single particles in a jet;
- charged particle with tracker;
- photons with ECAL;
- neutrons with HCAL.

SiD detector concept: Si tracking system

A vertex detector for the ILD - 1

Two alternative geometries

- 5 single-sided layers.
- 3 double-sided layers.

Sensor requirements

- Single point resolution ~ $3\mu m$.
- Material budget 0.16/0.11% X₀/layer.
- Integration time 25 100 $\mu s.$
- 16/15 mm inner radius.
- Radiation tolerance ~0.3MRad, few $10^{11}n_{eq}/cm^2$.
- O(10³) hit pixels/cm²/10 $\mu s~$ on the inner layer.
- Averaged power dissipated << 100 W.

A vertex detector for the ILD - 2

Accelerator	a (µm)	b (μm GeV)
LEP	25	70
SLD	8	33
LHC	12	70
RHIC-II	13	19
ILC	< 5	< 10

 $\sigma_{ ext{ IP}}$ = a \oplus b/psin $^{3/2} heta$

a depends on the intrinsic resolution and inner radius

b depends on material budget

Fast, highly granular, light detector !

CMOS sensor principle

Signal collection

- Charges generated in epitaxial layer \rightarrow ~1000 e⁻ for MIP.
- Charge carriers propagate thermally.
- In-pixel charge to signal conversion.

Advantages

in-pixel High granularity (< 10 μ m pitch). • micro-circuits Thickness (<50µm). • Integrated signal processing. ٠ Standard process (cost, prototyping, ...) charge collecting ٠ evitainal and repres. substate or bulk Issues 10-20 µm Undepleted volume limitations. ٠ radiation tolerance. • intrinsic speed. Small signal O(100e⁻)/pixel. ٠ In-pixel µ-circuits with NMOS transistors only. particle ٠

Basic performances

- More than 30 different sensors designed, fabricated and tested (lab & beam).
- Extensive use of $0.35\mu m$ CMOS technology.
- Room temperature operation.
- Noise ~10-15e⁻.
- S/N ~ 15-30.
- Detection efficiency ~100% @ fake hit rate O(10⁻⁴ -10⁻⁵).
- Radiation tol. > 1MRad and $10^{13}n_{eq}/cm^2$ with $10\mu m$ pitch ($2x10^{12}n_{eq}/cm^2$ with $20\mu m$ pitch).
- Spatial resolution 1-5 μ m (pitch and charge-encoding dependent).
- Macroscopic sensors (Ex. MIMOSA-5: 1.7 x 1.7 mm², 10⁶ pixels).
- Used in beam telescopes and VTX demonstrators (EUDET, TAPI, STAR, CBM).

Mimosa-26

Fast full scale sensors: ~10kFrame/s

column parallel architecture + integrated zero-suppression (prototyping with MIMOSA-22 for binary output + SUZE-01 for \emptyset)

6 wafers x 77 sensors produced: fabrication yield ~90%

Laboratory tests

Analogue response for 8 different sensors:

- All pixels are alive.
- Noise is uniform across the sensitive area (~2cm²).
- Operated from 80 MHz (nominal) down to 20 MHz.
- Noise and CCE (from ⁵⁵Fe source) as expected (like MIMOSA-22).

Digital response for 21 different sensors:

- All discriminators are operational at nominal speed.
- Discriminator noise like MIMOSA-22.

Analogue + digital response:

• Total noise 0.7 mV (~12-13 e⁻ ENC) like MIMOSA-22.

Zero-suppression works as expected.

Full chain:

- Fake hit rate O(10⁻⁴) @ 6N discri. threshold.
- Performances unchanged for $20^{\circ} < T < 40^{\circ}$

Array of 660,000 pixels coupled to 1152 discriminators works ~ as expected

Preliminary beam test results

- TAPI = IPHC-Strasbourg BT for MIMOSA development.
- Test @ CERN-SPS (120 GeV π^- beam).
- 6 MIMOSA-26 sensors running simultaneously at nominal speed (80 MHz). Mimosa 26 - Plane 1
- 3 x 10⁶ triggers.

Mimosa 26 - Plane 2

EUDET beam telescope

Reference planes of EUDET Beam Telescope

- Supported by EU FP6.
- Infrastructure to support the ILC detector R&D.
- Specifications:
 - Extrapolated resolution <2 μm.
 - Sensor area ~2 cm².
 - Read-out speed ~ 10 kframe/s.
 - Up to 10⁶ hits/s/cm².

Commissioning @ CERN-SPS last year:

- BT completely equipped with MIMOSA-26.
- Largely used by ILC and non-ILC groups.

www.eudet.org

Mimosa-26 evolutions: STAR HFT

STAR @ RHIC Heavy Flavour Tracker

PHASE-1:

- no \varnothing
- 640 x 640 pixels (30 μm pitch);
- 640 μ s integration time.
- 50 μ m thin.
- 1/4 of the detector.

ULTIMATE:

- MIMOSA-26 like.
- 1152 x 1024 pixels (18.4 μm pitch);
- 200 μ s integration time.
- 50 μ m thin.
- Improved radiation tolerance.
- First data in 2012

Mimosa-26 evolutions: CBM MVD

CBM @ FAIR Micro Vertex Detector

- Double sided readout.
- 0.18 μ m (40 \rightarrow 20 μ s integration time).
- Improved radiation tolerance.
- Prototyping until 2012.

Interest expressed by the ALICE collaboration for the upgrade in view of sLHC

The ILD applications

Physics requirements

- single point resolution ~ $3\mu m$.
- integration time 25 100 $\mu s.$
- O(10³) hit pixels/cm²/10 $\mu s\,$ on the inner layer.
- ...

From 0.35 μ m to (<)0.18 μ m feature size:

• improved clock frequency, more metal layers, more compact peripheral circuitry, ...

Extension for the outer VTX layers:

• σ ~ 3 μm : 4-5 bits ADC and a ~ 35 μm pitch (r.o. ~100 μs).

For the inner layers:

- ~ 15 μm pitch $\ \rightarrow$ binary readout.
- Double-sided r.o. \rightarrow r.o. ~ 50 $\mu s.$
- Smaller feature size \rightarrow 35 40 μ s.
- Double sided ladders \rightarrow << 35 $\mu s.$

Improve time resolution with double sided structure

Seminaire du LPNHE

System integration: the PLUME project

- Pixel Ladder with Ultra-low Material Embedding.
- Bristol DESY Oxford Strasbourg (synergy with CBM-MVD).
- Double sided ladder equipped with 2x6 MIMOSA-26 (ILC DBD 2012).
- 0.2 0.3 % X₀.
- Explore feasibility, performances and added value of double-sided ladders.
- Allows for improved time resolution (outer layer with longer and fewer pixels).
- Use of infrastructures foreseen in AIDA (FP7 project in preparation).

System integration: the PLUME project

2009

• 2 pairs of MIMOSA-20 sensors (4 x 1 cm², 50 μ m thin) mounted on flex cable + SiC support.

- Total material budget ~0.5% X₀.
- Beam test at CERN-SPS in November.

2009 - 2012

• 2 x 6 MIMOSA-26 sensors (12.5 x 1 cm², 50 μ m thin) mounted on flex cable + SiC support.

• Total material budget ~ 0.2% X₀.

System integration: SERWIETE

- SEnsor Row Wrapped In Extra-Thin Envelope (HP 2 Project).
- Frankfurt Darmstadt Strasbourg.
- Sensors wrapped in thin polymerised film.
- <0.15% X_0 expected for sensor (35 μ m thin) \oplus flex \oplus film (no mechanical support).
- May match cylindrical surfaces (beam pipe?).
- Proof of principle in 2012.
- First prototype by Spring (analog output, ~4ms)
- Second prototype by 2011 (digital output, ~110μs)

Proto 2 > Summer 2011

Further developments: high resistivity epi layer

High resistivity epitaxial layer(O(10³) Ω ·cm) \Rightarrow depleted sensitive volume!

- \Rightarrow Faster charge collection
- \Rightarrow Shorter path length (improved tolerance to non-ionising radiation)
- \Rightarrow Larger CCE (larger pitch possible without affecting the detection efficiency)

Exploratory sensor: MIMOSA-25 (0.6 µm technology)

- Fabricated in 2008 and tested at CERN-SPS before and after irradiation.
- Cluster size ~ 2×2 pixels (3×3 for low resistivity epi-layer).
- S/N ~ 60 for seed (20-25 for low resistivity epi-layer ~ 30 @ $3 \cdot 10^{13} n_{eq}$ /cm²).
- ϵ = 99.9% (99.5% @ 3 · 10¹³n_{eq}/cm²).
- Improved tolerance to non-ionizing radiation (1-2 OoM).

Also: VDSM technology under study in coll. with CERN for sLHC (LePIX) (<< 1 μ s)

NEW!

MIMOSA-26 high res.(400 Ω ·cm) 0.35 μ m presently under test (for STAR-HFT) Preliminary lab test with Ru source (Analog test mode)

Further developments: 3D IT

Benefits:

- Increase integrated processing.
- 100% sensitive area.
- Select best process per layer task.

To be assessed:

- Material budget?
- Power dissipation?

Example

- Tier1: charge collection.
- Tier2: analog signal processing.
- Tier3: digital signal processing.
- Tier4: data transfer.

FNAL + IN2P3 + INFN + ... consortium (3DIC) First chips (2-Tier 130nm technology) being fabricated

3D IT first try

2 Tiers sensor for delayed readout:

- ILC delayed readout.
- ro + discri+ time stamp + memory in each pixel.
- 12 μ m pitch (reduce # hits/pixel/ro)

2 Tiers sensor to minimize power consumption:

- IPHC-IRFU
- Rolling-shutter in submatrices

3 Tiers sensor:

- IPHC-INFN Padova/Bergamo
- 2 Tiers signal processing + 1 Tier detection (High res.)
- ~ 1 μ s readout

Other (non HEP) applications

• Dosimetry, surgery camera, ...

Summary and future perspectives

Current CMOS sensors

- Mature technology for real scale applications.
- High resolution, very low material budget.

First full scale sensor with high read-out speed: MIMOSA-26.

- Binary output + integrated zero-suppression.
- Tested in laboratory and on beam.
- EUDET-BT, STAR-HFT, ALICE, CBM-MVD, ILD-VTX (option).

System integration studies started: PLUME, SERWIETE, \rightarrow Material budget O(0.1 % X₀)

New perspectives

Depleted sensitive volume:

- Technology prototyped with MIMOSA-25.
- MIMOSA-26 high res. under test.
- Expectations: fast charge collection and non ionizing radiation tolerance > $10^{14}n_{eq}/cm^2$.

3D integration technique:

- 3 CAIRN prototypes being produced (low power, few μs r.o., delayed readout with timestamp).
- Heterogeneous chip (depleted sensitive volume).

More information on

http://www.iphc.cnrs.fr/-CMOS-ILC-.html

Calorimeter R&D for HEP detectors

The largest scale HEP detectors at (s)LHC and the future LC

*At electron-positron the final state corresponds to the underlying physics interaction, e.g. above see $H \rightarrow b\overline{b}$ and $Z \rightarrow \mu^+\mu^-$ and nothing else...

High precision LC physics demands a high precision detector:

- high precision vertex (flavor tagging) and tracking (Higgs from di-lepton recoil mass)
- precision calorimetry (heavy bosons reconstruction from di-jet decay)
- → significant improvements in the calo. system, in particular in the HCAL

15-20 Feb 2010

Erika Garutti - Calorimetry

4/44

Readout Chain: Pixel

