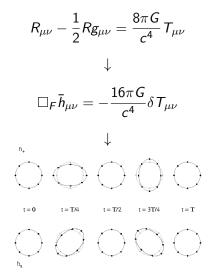
A joint GW/GRB Bayesian study for low-luminosity short GRB population

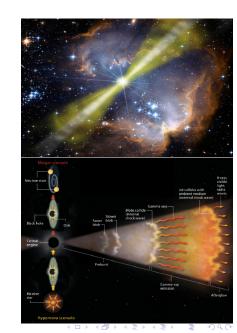
Matteo Pracchia

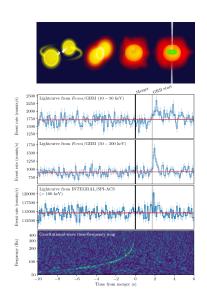
Laboratorie d'Annecy de Physique des Particules (LAPP)

July 8, 2022



Gravitational Waves (GW)


- Perturbations of spacetime predicted by General Relativity
 - Solution found by perturbing Einstein's equations
- Observable through Michelson interferometers
 - Nowadays observed only from compact binary coalescences


Gamma-Ray Bursts (GRB)

- Transient flashes of high energy light
- Generated by cataclysmic astrophysical events
 - Long GRBs (LGRB) from core collapse supernovas
 - Short GRBs (sGRB) from compact object coalescences
- Central engine produces the burst into collimated jets

GW and GRB: multimessenger astronomy

- Multimessenger astronomy: different kinds of signals from the same event
- Joint and unambiguous detection of GW170817 and GRB 170817A
 - Binary neutron star systems (BNS) as short GRB (sGRB) sources
 - Confirmed by kilonova afterglow observations

GRB 170817A: an unique event

- $D_L \sim$ 40 Mpc, $L_{\rm iso} \sim 10^{47}~{\rm erg~s^{-1}}$: closest and dimmest sGRB ever observed
 - Off-axis observation
- Needs to explore low-luminosity sGRB population
 - ▶ I.e. fraction of sGRB population potentially observable off axis

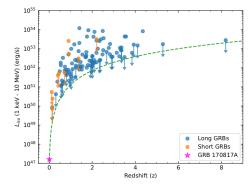
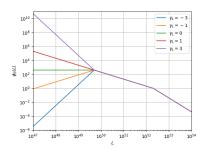
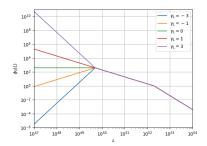



Figure: Source: B.P. Abbott et al 2017 ApJL 848 2 L13

Joint GW/GRB population study: Luminosity Function

- Multimessenger astronomy (GW+GRB) to explore low luminosity population
 - Statistical sGRB population study exploiting with GW analysis results


$$\phi_0(L_{\mathrm{iso}}) \equiv \frac{\mathrm{d}^P}{\mathrm{d} \ln L_{\mathrm{iso}}} = \begin{cases} \left(\frac{L_{\mathrm{iso}}}{L_{**}}\right)^{-\gamma_L} \left(\frac{L_{**}}{L_{*}}\right)^{-\alpha_L}, & L_0 \leq L_{\mathrm{iso}} < L_{**} \\ \left(\frac{L_{\mathrm{iso}}}{L_{*}}\right)^{-\alpha_L}, & L_{**} \leq L_{\mathrm{iso}} < L_{*} \\ \left(\frac{L_{\mathrm{iso}}}{L_{*}}\right)^{-\beta_L}, & L_{\mathrm{iso}} \geq L_{*} \end{cases}$$

Joint GW/GRB population study: Luminosity Function

- Broken power law to describe sGRB luminosity distribution $\phi_0(L_{\rm iso}) = {\rm d}P/{\rm d}\ln(L_{\rm iso})$
 - \triangleright α_L , β_L , L_* and L_{**} fixed in Wanderman & Piran (2015)
 - Added low luminosity branch

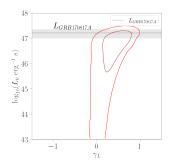
$$\phi_0(L_{\mathrm{iso}}) \equiv \frac{\mathrm{d}P}{\mathrm{d}\ln L_{\mathrm{iso}}} = \begin{cases} (\frac{L_{\mathrm{iso}}}{L_{**}})^{-\gamma_L} (\frac{L_{**}}{L_{*}})^{-\alpha_L}, & L_0 \leq L_{\mathrm{iso}} < L_{**} \\ \frac{L_{\mathrm{iso}}}{L_{*}})^{-\alpha_L}, & L_{**} \leq L_{\mathrm{iso}} < L_{*} \\ (\frac{L_{\mathrm{iso}}}{L_{*}})^{-\beta_L}, & L_{\mathrm{iso}} \geq L_{*} \end{cases}$$

Joint GW/GRB population study: Bayesian analysis

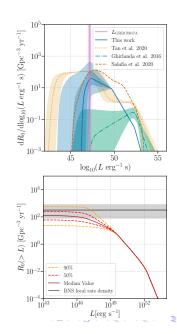
$$P(\gamma_L, L_0|x) = \frac{\mathfrak{L}(x|\gamma_L, L_0)\Pi(\gamma_L, L_0)}{\int_{\gamma_L^{min}}^{\gamma_L^{max}} \int_{L_0^{min}}^{L_0^{max}} \mathfrak{L}(x|\gamma_L, L_0)\Pi(\gamma_L, L_0)\mathrm{d}\gamma_L\mathrm{d}L_0}$$

- Goal: put a constrain on γ_L and L_0 through Bayesian analysis
 - Constraints on γ_L and L_0 found through confidence intervals
- Extension of analysis done for O2 LIGO/Virgo GRB followup paper



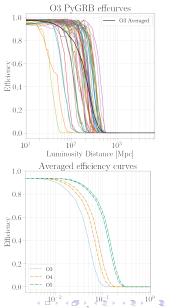

Figure: Source: B.P. Abbott *et al* 2019 *ApJ* **886** 75

• Local rate $(z \ll 1)$ strongly depending on γ_L


Prior PDF $\Pi(\gamma_L, L_0)$ & Likelihood $\mathfrak{L}(x|\gamma_L, L_0)$

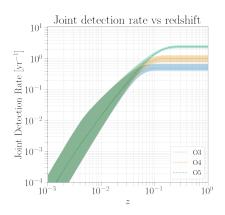
- Observed sGRB rate redshift distribution
 - Short GRB redshift distribution
 - ► GRB energy spectrum modeled through Band function
 - Luminosity function
 - Properties of Fermi/GBM detector
- Prior computing
 - Uninformative assumption: logarithm of local observed rate density probability constant over γ_L and $\ln(L_0)$
 - Informative assumption: BNS rate as upper limit for sGRB rate
- Likelihood as probability of seeing what observed during LIGO/Virgo runs
 - One 170817-like joint detection during three LIGO/Virgo runs
 - Exploited results of modeled GW follow-up of GRBs (PyGRB)

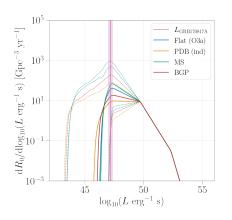
Results



- From marginalized posterior over L_0 : $\gamma_L = 0.28 \pm 0.45$
- Luminosity function peaks around $L \sim L_{
 m GRB170817A}$
- sGRB local rate density compatible with BNS local rate density

GW-GRB Joint detection rate

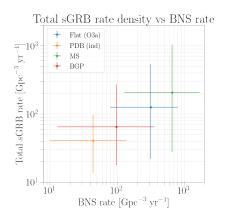

- LIGO/Virgo network GW efficiency curve
 - O3 PyGRB efficiency curves averaged
 - Rescaled to O4 and O5 BNS ranges
 - "No IFOs" duty cycle

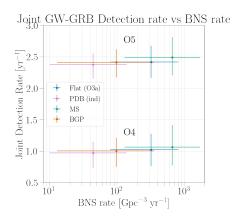

GW-GRB Joint detection rate

$$R_{\rm GW-GRB}(< z) = R_0^{\rm GBM} \frac{\int_0^z \frac{\mathrm{d} P_{\rm GRB}}{\mathrm{d} z'} \eta_{\rm O4}^{\rm GW}(d_{\rm L}(z')) \mathrm{d} z'}{\int_0^{z_{\rm max}} \frac{\mathrm{d} P_{\rm GRB}}{\mathrm{d} z'} \mathrm{d} z'}$$

- Normalized through Fermi/GBM observed rate $(R_0^{\mathrm{GBM}} = 39.5 \ \mathrm{yr}^{-1})$
- Dependence on (γ_L, L_0) highlights dependence on low luminosity part of the population

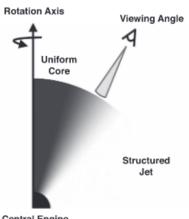
Dependence on NS mass distribution




- Different NS mass distributions bring to different BNS rates
 - From O3a population analysis uniform NS mass distribution between 1 and $2.5~M_{\odot}$
 - In O3b population analysis considered various distributions of masses and spins

Comparing results from different NS mass distributions				
	Flat (O3a)	PDB (ind)	MS	BGP
BNS rate [Gpc ⁻³ s]	320+490	44+96	660 ⁺¹⁰⁴⁰ ₋₅₃₀	98 ⁺²⁶⁰
γ_L	0.28 ± 0.45	$0.01^{+0.38}_{-0.37}$	$0.39^{+0.48}_{-0.51}$	$0.14^{+0.43}_{-0.40}$
sGRB Rate [Gpc ⁻³ s]	128+445	41_27	206+824	65+207
04 JDR [yr ⁻¹]	$1.03^{+0.25}_{-0.27}$	$0.97^{+0.18}_{-0.24}$	$1.07^{+0.32}_{-0.29}$	$1.00^{+0.21}_{-0.25}$
O5 JDR [yr ⁻¹]	2.42 ± 0.26	$2.37^{+0.18}_{-0.22}$	$2.49^{+0.32}_{-0.28}$	$2.41^{+0.21}_{-0.24}$

Dependence on NS mass distribution


sGRB rates averagely lower when considering lower BNS rates

What's next?

- Dependence of L_{iso} from observing angle θ_{v}
 - First model: gaussian dependence with two parameters $(L_{iso}^{c}, \theta_{c})$
 - Possible models which include more parameters
- Predictions for next IVK runs

Central Engine

The end (thanks!)

Backup: LIGO/Virgo search for GW transients associated with GRBs

- X-pipeline for unmodeled GW search
 - Search for subthreshold GW transients given time and position of a GRB event
 - Coherent search among the detectors to avoid glitches
- No significant GW event among the analyzed GRBs

Backup: GRB isotropic peak luminosity

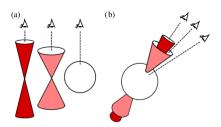
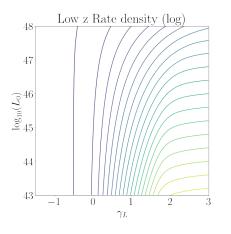
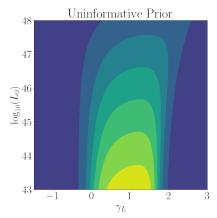
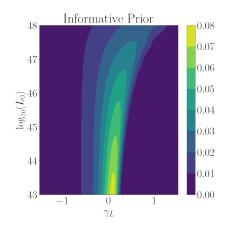


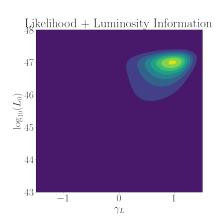
Figure 1. Sketch of the two possible scenarios described in Lipunov et al. (2001). In the first one (a) GRB jets are seen on-axis, and they differ by their seemi-aperture and consequently their observed energy, with the brightest being the most collimated; in the second one (b) the jet configuration is such that the viewing angle determines which component contributes most significantly to the received energy.

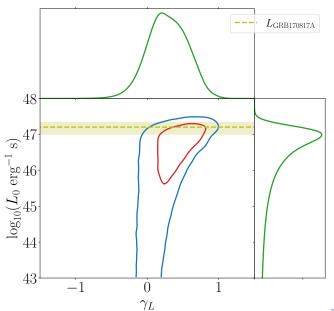

Figure: Source: O.S. Salafia *et al.* 2015 *MNRAS* **450** 4 3549–3558


$$L_{\rm iso} = 4\pi \frac{D_L^2(z)}{(1+z)} k(z) C_{\rm det} P_{64}$$

$$C_{\mathrm{det}} = \frac{\int_{10\mathrm{MeV}}^{1\mathrm{keV}} EN(E) \mathrm{d}E}{\int_{E_{\mathrm{min}}^{\mathrm{d}}}^{E_{\mathrm{max}}^{\mathrm{d}}} N(E) \mathrm{d}E}$$


$$k(z) = \frac{\int_{E_{\mathrm{min}}^{\mathrm{d}}}^{E_{\mathrm{max}}} N(E) \mathrm{d}E}{\int_{(1+z)E_{\mathrm{min}}^{\mathrm{d}}}^{(1+z)E_{\mathrm{min}}^{\mathrm{d}}} N(E) \mathrm{d}E}$$


Backup: iso-rate curves & uninformative prior



Backup: informative prior & likelihood

Backup: marginalized posteriors

