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APPLICATIONS OF MACHINE LEARNING in DA

* Approximation of non-linear functions

 Compression, embedding, alternative representation of the data
* Alternative ways to perform Bayesian inference

* Accelerating traditional approaches

e Approximation of the distributions
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INFERENCE
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INFERENCE

p(xle)p(e) e data model:
p(2) r = h(0) +n

i

« wavetorm template»

p(f|r) =

measurement

\

ohysical parameters ~ NOISE



INFERENCE

p(:c|0)p(9) problem:

p(9|$) — marginal likelihood
has no exact solution

p(z) = / p(2|0)p(6)d0
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solutions:
® approximate inference:
p(9|$) — p(x|0)p(9) - MCMC/Nested sampling
requires likelihood evaluation

we can do it, but it is slow
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solutions:
® approximate inference:
p(9|$) — p(az|¢9)p(6’) - MCMC/Nested sampling
requires likelihood evaluation

we can do it, but it is slow

- Variational inference
approximate the posterior distribution
with a tractable distribution
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solutions:

p($|9)p(9) * simplification to the model:

- Gaussian mixture models

too simple

- Invertible models

p(f|r) =

will talk about them today



INVERTABLE TRANSFORM

If x is a random variable with the CDF 1(x),
then the random variable y = f(x) has a uniform distribution on [0, 1].

0.6 -
0.4
0.2 -
C.0
0.0 0j2 0.4 0j6

po () fo(z) = f_m po(t) dt




INVERTABLE TRANSFORM

Change of variables for probability density function

d d

fr(y) = —Fy (y) = dsz(g‘l(y))

Apply chain rule

= fz(g‘l(y))lddyg‘l(y)l
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NORMALISING FLOWS

1. We have simple random generator
2. We want to sample from a more complex distribution
3. We can estimate a bijective transtormation which will allow us to do that




CHANGE OF VARIABLE EQUATION

p(y) = q(f(y))| det(Js(y))
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CHANGE OF VARIABLE EQUATION

p(y) =a(f(y)) det(Js(y))

° f has to be a bijection

e [ and f_l have to be differentiable

e Jacobian determinant has to be tractably invertable
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JACOBIAN

 The calculation of determinant Jacobian will take O(NA3)
* We need to speed it up
* For example, make Jacobian triangular matrix
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AFFINE TRANSFORM

| ocation-scale transformation

T(2;) = ;2 + B

log-Jacobian becomes

log | det J,-1(2)| = Z log |y
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COUPLING TRANSFORM

in a complex way.

@ @ @ @ The other part is left unchanged.

In each simple bijection,
part of the input vector

is updated using a function
which is simple to invert,

but which depends on the
remainder of the input vector
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REAL NVP

Coupling transtormation combined with affine

transformation and its invention

{ylzd — L1:d
Yd+1:D = Td+1:D O exp (s(z1:q)) + t(z1:q)
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What is t and s?

https://arxiv.org/abs/1605.08803
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FUNCTION APPROXIMATION

can be parameterised by any NN:
- Fully connected
Residual

qb(b-l—Zwixi) =5 CNN
=1

o

output

non-linearity

inputs weights . bias
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NEURAL SPLINE FLOWS

e Coupling transform  Monotonic rational-quadratic

spline transtorm

— RQ Spline

nverse
Knots
= U]
B 'l
—B 0 B
X

image: Duncan C. et al, Neural Spline Flows
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CONDITIONING

* Do not have access to samples from posterior
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CONDITIONING

* Do not have access to samples from posterior

* Have access to samples from prior +
e Can generated simulated data I = h(@) + 1N

p(0)
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CONDITIONING Condition map

. on simulated data
* Do not have access to samples from posterior

* Have access to samples from prior +
e Can generated simulated data I = h(@) + 1N

p(0)
I

Therefore have access to the joint sample p(at, 9) — P($|9)P(9)
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CONDITIONING Condition inverted map

on real data
* Do not have access to samples from posterior

* Have access to samples from prior +
e Can generated simulated data I = h(@) + 1N

e F(v) (0l
&= e
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COMPOSING FLOW
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OPTIMISATION

* The flow is trained to maximise the total log likelihood of the data
with respect to the parameters of the transform.

log p(y|A) = zlog (i |A)])
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WAVEFORM EMBEDDING

* Low frequency sensitivity -> long wavetforms
e Construct reduced orthogonal basis
e Use coefticients of the wavetorm projection on a new basis
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WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

H=VXU?!
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WAVEFORM EMBEDDING

Decompose a matrix constructed of the set of waveforms

H=VXU?!

Project sample simulated data on this basis
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RESULTS
PRELIMINARY
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CONCLUSIONS

e Alternative sampling methoa
e Can be used for low latency pipeline
e Can be used to approximate complex distributions



23

LATENT VARIABLE AND SOURCE SEPARATION
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LATENT VARIABLE AND SOURCE SEPARATION

e \\We will observe tens of thousands GBs

* 10 to 100 MBHBs per year
* 1 to 10000 EMRIs per year

* Have to find a way to analyse them together or disentangle
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COCKTAIL PARTY PROBLE
‘ i |

{ xl(t% = a1151(t) + a1252(t)

L9 (t — AaA921S1 (t) T 9292859 (t)

z(t) = D(7, f) : h(f,)

Traditional way to solve this
problem was to find
independent components
in the data.
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INDEPENDENT COMPONENT ANALYSIS

Traditional way — find independent components by maximising non-
(Gaussianity.

This is a linear problem.
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PRINCIPLE COMPONENT ANALYSIS

PCA maps original data
into a new coordinate
system which maximises
variance of the data
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PRINCIPLE COMPONENT ANALYSIS

The mapping to the new
basis can be expressed
using the eigenvectors ot
the Covariance matrix

C = E{xx"}

Eigenvalue decomposition

C = UDU!
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PRINCIPLE COMPONENT ANALYSIS

The vector of principle
components

y = U'x
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PRINCIPLE COMPONENT ANALYSIS

't has been shown that it is possible to formulate PCA in
terms of Neural Networks

x = WWI1x
1 T
_ S T (. \2
JMSE = 7 Z 1%(7) — WWx(j)]]
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Wlabl

W27 b2

PRINCIPLE COMPONENT ANALYSIS

h = O'(W1X+b1)

y = Wsoh + by
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AUTOENCODER

o ©® Autoencoder

PCA

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf



https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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AUTOENCODER

....
...
L] ..
...
....
L



3

DENOISING AUTOENCODER

Encoder Decoder

Mixed input Clean output

Conv2D +

MaxPool se2D
Conv2D Conv2D + bo ConvTrans- ConvTrans-

MaxPool pose2D pose2D
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TRAINING THE NETWORK

Backpropagation
Input Output
f v \
> CDAE >
\ J

I

»_ ) MSE Loss —
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VARIATIONAL AUTOENCODERS

sample
latent
variable
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VARIATIONAL AUTOENCODERS

Optimisation
p(z|lz) = p(z|2)p(2) <— We want to estimate
p(z) latent variable,
given data
p(iE) — is again intractable but can be

approximated using Variational
inference
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VARIATIONAL AUTOENCODERS

We use ELBO (Evidence Lower BOund)

log p(x) = likelihood — Dky,|q(z|x)||p(2)]

DI———S==N
better reconstruction hetter K|
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LATENT SPACE

Allows interpolation in the latent space

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfeé67eb5daf


https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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CONCLUSIONS

e Use this approach as a search.

e Use this approach to embed the data. For example, can project the data
in such a way that we only sensitive to one type o signals.

* Use this approach to compress the data.
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OTHER APPLICATION

e Filling gaps with the approximation of the joint distribution.

* Speeding up sampling by approximating the likelihood surtaces.
e Surrogate waveforms.

e Anomaly detection for unmodelled searches.

e Data analysis without TDI.

e Optimisation with Reinforcement Learning.



