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APPLICATIONS OF MACHINE LEARNING in DA
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• Approximation of non-linear functions 
• Compression, embedding, alternative representation of the data 
• Alternative ways to perform Bayesian inference 
• Accelerating traditional approaches 
• Approximation of the distributions 
• …
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• data model:  

 « waveform template»   

physical parameters 

measurement  
noise 
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 problem: 
  marginal likelihood 
  has no exact solution 
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• approximate inference: 
   - MCMC/Nested sampling 
      requires likelihood evaluation 
      we can do it, but it is slow 
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 solutions: 

• approximate inference: 
   - MCMC/Nested sampling 
      requires likelihood evaluation 
      we can do it, but it is slow 

  - Variational inference 
      approximate the posterior distribution  
      with a tractable distribution 
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   - Gaussian mixture models 
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 solutions: 

• simplification to the model: 
   - Gaussian mixture models 
      too simple 

  - Invertible models 
      will talk about them today 
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If x is a random variable with the CDF f(x),  
then the random variable y = f(x) has a uniform distribution on [0,1].  



INVERTABLE TRANSFORM
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Change of variables for probability density function 

Apply chain rule 
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NORMALISING FLOWS
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1. We have simple random generator 
2. We want to sample from a more complex distribution 
3. We can estimate a bijective transformation which will allow us to do that
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•       has to be a bijection 

•        and             have to be differentiable  

•   Jacobian determinant has to be tractably invertable 



JACOBIAN
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• The calculation of determinant Jacobian will take O(N^3) 
• We need to speed it up 
• For example, make Jacobian triangular matrix



AFFINE TRANSFORM
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 Location-scale transformation

log-Jacobian becomes



COUPLING TRANSFORM
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In each simple bijection,  
part of the input vector  
is updated using a function  
which is simple to invert, 
but which depends on the  
remainder of the input vector  
in a complex way. 
The other part is left unchanged.



REAL NVP
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Coupling transformation combined with affine 
transformation and its invention 

but which depends on the remainder of the input vector in a complex way

What is t and s? 
but which depends on the remainder of the input vector in a complex way

https://arxiv.org/abs/1605.08803 
but which depends on the remainder of the input vector in a complex way



FUNCTION APPROXIMATION
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can be parameterised by any NN: 
- Fully connected 
- Residual 
- CNN 
- …



NEURAL SPLINE FLOWS
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• Coupling transform

image: Duncan C. et al, Neural Spline Flows

• Monotonic rational-quadratic  
  spline transform 
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• Do not have access to samples from posterior 
• Have access to samples from prior +  
• Can generated simulated data 

Condition map 
on simulated data

Therefore have access to the joint sample
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• Do not have access to samples from posterior 
• Have access to samples from prior +  
• Can generated simulated data 

Condition inverted map 
on real data



COMPOSING FLOW
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OPTIMISATION
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• The flow is trained to maximise the total log likelihood of the data 
  with respect to the parameters of the transform. 



WAVEFORM EMBEDDING
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• Low frequency sensitivity -> long waveforms 
• Construct reduced orthogonal basis 
• Use coefficients of the waveform projection on a new basis



WAVEFORM EMBEDDING
Decompose a matrix constructed of the set of waveforms
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WAVEFORM EMBEDDING
Decompose a matrix constructed of the set of waveforms
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Project sample simulated data on this basis
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CONCLUSIONS
• Alternative sampling method 
• Can be used for low latency pipeline 
• Can be used to approximate complex distributions
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LATENT VARIABLE AND SOURCE SEPARATION
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LATENT VARIABLE AND SOURCE SEPARATION
• We will observe tens of thousands GBs 
• 10 to 100 MBHBs per year 
• 1 to 10000 EMRIs per year
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• Have to find a way to analyse them together or disentangle 



COCKTAIL PARTY PROBLEM
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Traditional way to solve this  
problem was to find  
independent  components  
in the data. 

ill be



INDEPENDENT COMPONENT ANALYSIS
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Traditional way — find independent components by maximising non-
Gaussianity. 

ill be
This is a linear problem. 

ill be



PRINCIPLE COMPONENT ANALYSIS
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x1

x2
PCA maps original data  
into a new coordinate 
system which maximises 
variance of the data
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x1

x2
The mapping to the new 
basis can be expressed 
using the eigenvectors of 
the Covariance matrix

Eigenvalue decomposition 
will be



PRINCIPLE COMPONENT ANALYSIS
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y1
y2 y1

y2
The vector of principle 
components 

will be



PRINCIPLE COMPONENT ANALYSIS
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y1
y2 y1

y2
It has been shown that it is possible to formulate PCA in 
terms of Neural Networks



PRINCIPLE COMPONENT ANALYSIS
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y1
y2 y1

y2



AUTOENCODER
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https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf
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y1
y2 y1

y2



DENOISING AUTOENCODER
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TRAINING THE NETWORK
32



NETWORK PERFORMANCE
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VARIATIONAL AUTOENCODERS
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VARIATIONAL AUTOENCODERS
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Optimisation

<— We want to estimate  
        latent variable,               
        given data

— is again intractable but can be 
approximated using Variational 
inference 



VARIATIONAL AUTOENCODERS
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We use ELBO (Evidence Lower BOund)

better reconstruction better KL



LATENT SPACE
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https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Allows interpolation in the latent space

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf


CONCLUSIONS
• Use this approach as a search. 
• Use this approach to embed the data. For example, can project the data 
  in such a way that we only sensitive to one type o signals. 

• Use this approach to compress the data.
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OTHER APPLICATION
• Filling gaps with the approximation of the joint distribution. 
• Speeding up sampling by approximating the likelihood surfaces. 
• Surrogate waveforms. 
• Anomaly detection for unmodelled searches. 
• Data analysis without TDI. 
• Optimisation with Reinforcement Learning.  
• ….
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