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ML-based modelling for LISA

Towards a fast unmixing of the LISA data
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Why non-parametric methods ?
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The road towards “global analysis” might require a two-stage approach:

1- A fast and robust unmixing stage allowing to:

- Detect known and unknown GW events

- Provide a first rough estimate of individual source

- Provide a rough estimate of the parameter space region for each individual source

- Robustness w.t. gaps, glitches, source leakages, non-stationary noise, etc.

2- A precise refinement stage using more heavy-weight methods (e.g. MCMC)

Non-parametric methods (that do not make direct use of analytic waveform sims codes)

may be a good candidate: 


e.g. sparse modelling in wavelets (already popular in LIGO/VIRGO), Fourier, STFT, etc.
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Non-parametric models in action
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So far, during Aurore Blelly’s PhD, we have investigated the use of sparsity-based 
methods to detect/estimate GB events:

GBs have quasi-periodic waveforms sparse in the Fourier domain

Blelly, Moutarde, Bobin, Phys. Rev. D, 2020 Blelly, Bobin, Moutarde, MNRAS, 2021

GB detection/estimation

Detection/estimation results from LDC 1-3

Dealing with gapped data

Gaps’ effect on a GB waveform Detection: false positive rate/data SNR


10 min gaps every 24h
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LISA: the complexity of GW event unmixing
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Standard sparse models rely on linear representations, which are not adapted to 
efficiently capture morphologies of most GW waveforms (e.g. GB, MBHB)

Such signals better live on a low-dimensional manifold.

Two examples of GB waveforms in the Fourier domain

ℳ

Learning a signal representation  learning to “navigate” on the manifold≡

-  Culpepper & Olshausen, 2004
 -  Connor, Canal & Rozell, 2020
   Transport learning on manifold
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Learning manifold representations

8

ℳ

Learning how to transport points on 
the manifold from anchor points 


φ1
φ2

φ3

x

Define model-based signals as barycenters according to some metric ϕ

x = argminz

d

∑
i=1

λiϕ(z, φi)

To be learnt
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ℳ

φ2

φ3

x
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φ2
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φ1

Φ Encoder

Ψ Decoder

ΦΨLearn and

Bobin, Carloni-Gertosio, Bobin, Thiam, 2021

Autoencoder-like

“compressed”


representation

Learn a non-linear Can be plugged 


into standard 


minimisers 

Linear interpolation

Learning manifold representations
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Learning manifold representations

Interpolatory AutoEncoder (IAE)

{xj} Φ

Ψ

Φ{φi}

Training set

Anchor points

Reconstructed

min
Φ,Ψ ∑

xj∈𝒯

xj − Ψ (∑
i

̂λi(xj)Φ(φi))
2

ℓ2

{ ̂λi(ω)}i = argmin{λi}i
Φ(ω) − ∑

i

λiΦ(ai)
ℓ2

Defined as Euclidean barycenters in the transformed domain

π = ∑
i

̂λi(ω)Φ(ai)

x̃ = Ψ(π)

The parameters of the networks  and  (e.g. MLP, CNN etc.)

are learnt by minimising the reconstruction error: 

Φ Ψ

Encoder

Decoder

Choosing the can be made automatically by imposing a sparsity constraint in the latent domain

Training set: 5000 FastGB sims, uniform parameters’ distribution  

Fully connected residual network, with 3 layers, #hidden units/layer equal for all layers to the input dimension
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Illustration

PCA vs IAE - dimension of 9 (#of APs or PCs)

Noiseless examples Noisy examples (LISA PSD as of LDC1-3)
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Results

ReconstructionDetection

False negative rate/input SNR Recovery MSE in dB/input SNR

Slight improvement in recovery MSE

Significant improvement in recovery FNR



April, 13th 2022

Preliminary application to MBHBs
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What’s next for GBs ?
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- Going towards a full fast GB pipeline

- Estimation of individual events from the galaxy, discrimination resolved/unresolved sources

- Improving the architecture for GB models

- Plugging in the learned models in inpainting algorithm to deal with gaps

- One of the building blocks for unmixing

- Can we derive the parameters ?

Parameter estimation

Internship of S.Charpigny
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What’s next for MBHBs and beyond ?
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- Going towards a full fast MBHB pipeline

- Building an hybrid inspiral/coalescence model for MBHBs (PhD work of E.Leroy)

- Plugging in the learned models in inpainting algorithm to deal with gaps, application to Spritz

- Can we derive the parameters ?

- Towards a first unmixing algorithm

- Together with Aurore’s work, second basic ingredient for unmixing, application to Sangria

- Beyond

- Applications to other “sources”, glitches ?

- Combining with “purely” non-parametric methods for unknown sources
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Not so different topic …


Learning to optimise
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General unmixing problems
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A linear mixture model

Multispectral observations Sources or components

Synchrotron

Fe

Ca

…

Spatial distribution

Emission spectra Noise

Unsupervised Source Separation:


Estimation both A and S from X 
only

Ill-posed problem:

Infinite number of 

solutions
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A complex problem to be tackled
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Data fidelity termRegularization

Terms

min
A,S

ℛ(A) + 𝒥(S) + 𝒟(X, AS)

Data fidelity term: - measures a discrepancy between the data and the model
- allows to account for the noise statistics
- general formulation for various mixture models

- make “better”-posed an ill-posed problem
- favour solution properties for increased interpretability

Regularization terms:

Change of representation

Fourier, wavelets,

Learning-based, etc.

Sparse/compressible

Representation
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Speeding-up unmixing algorithms
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min
A,S

ℛ(A) + 𝒥(S) + 𝒟(X, AS)

S(+) ← Pα𝒥[S(−) − γ∇S𝒟(X, AS(−))]
A(+) ← ⋯

Costly

Iterative algorithms

Algorithm unrolling

Each layer “mimics” 


a single iteration

X

Learn “algorithmic” hyperparameters

e.g. gradient stepsize, Hessian …

Recurrent neural network

̂
Â
S
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Speeding-up unmixing algorithms
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Fahes, Kervazo, Bobin, Tupin, ICLR 2022

Standard algorithm (PALM)

Learning-based 

(L-PALM) Regularisation parameter

Results on simulated Chandra

RNN with 15 layers

Faster (up to 4 orders/magnitudes)

Better (implicit regularisation)

than standard algorithms
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What to take away
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- discovery/recovery of badly/unknown events 

IAE: https://github.com/jbobin/IAE

GB codes :  https://github.com/GW-IRFU/gw-irfu

Towards hybrid non-parametric/ML-based models/methods

- for fast analysis

- flexible framework to deal with/account for systematics/artefacts

To be explored:

- Speed up/improve the recovery based on algorithm unrolling

- Uncertainty quantification (e.g Bayesian deep learning, etc)

- Speed up param. est. (e.g simulation-based inference ?)

https://github.com/jbobin/pyGMCALab
https://github.com/GW-IRFU/gw-irfu

