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Quick context elements

Hanford, Washington (H1) Livingston, Louisiana (L1)
10
|
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m 2015 : First GW detection by TN VR PEeevyy i
LIGO-VIRGO ground detectors i ANl

m 2034 : LISA launch

m First space interferometer :
3 satelites in heliocentric orbit
forming an interferometer with

2.0M km arm length

m Data : 4 years acquired through
3 channels containing millions of
potential signals from multiple
source types

1. Abbott et al. "Observation of gravitational waves from a binary black hole merger."

Physical review letters 116.6 (2016) : 061102.
2. University of Florida / Simon Barke (CC-BY 4.0)
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LISA: the complexity of GW event unmixing

Massive Black Hole

Binaries (MBHB) Galactic Binaries
- Loudest source (GB)
- 1 every 3 days - Millions of sources
- Transient "chirp" - Thousands of
o detectable ones
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Other sources

m Extreme Mass
Ratio Inspirals

m Stochastic
background

m Confusion
background

Noise
m Instrumental

m Glitches
m Gaps



LISA: the complexity of GW event unmixing

Simulated LISA data - 1 year - mixed GBs and MBHBs
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Why non-parametric methods ?

The road towards “global analysis” might require a two-stage approach:

1- A fast and robust unmixing stage allowing to:

- Detect known and unknown GW events

- Provide a first rough estimate of individual source

- Provide a rough estimate of the parameter space region for each individual source

- Robustness w.t. gaps, glitches, source leakages, non-stationary noise, etc.

2- A precise refinement stage using more heavy-weight methods (e.g. MCMC)

Non-parametric methods (that do not make direct use of analytic waveform sims codes)

may be a good candidate:

e.g. sparse modelling in wavelets (already popular in LIGO/VIRGO), Fourier, STFT, etc.
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Non-parametric models in action

So far, during Aurore Blelly’s PhD, we have investigated the use of sparsity-based

methods to detect/estimate GB events:

le-23
v o 4 Fourier i
- e : 16—17_
= 0] Transform ) =
w2 w
' 10-19 '
200.00 200.01 0.003
t (days) f (Hz)

GBs have quasi-periodic waveforms

> sparse in the Fourier domain

GB detection/estimation

A(d)[Kk] [su]

10-3 - JL —— Target
~—— Sparse

0.002 0.004 0.006
f (Hz)

Detection/estimation results from LDC 1-3

Blelly, Moutarde, Bobin, Phys. Rev. D, 2020
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Dealing with gapped data

T*‘ no gap 20 -

gap 25% small —=— C.I.
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10° = e 0
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frequency

10 min gaps every 24h
10! 162
SNR
Detection: false positive rate/data SNR

Gaps’ effect on a GB waveform

Blelly, Bobin, Moutarde, MNRAS, 2021



LISA: the complexity of GW event unmixing

Standard sparse models rely on linear representations, which are not adapted to
efficiently capture morphologies of most GW waveforms (e.g. GB, MBHB)

Such signals better live on a low-dimensional manifold.

o o
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— [R(A)]
- fo

107 4

0 20 a0 60 80 100 120
Frequency bins

Two examples of GB waveforms in the Fourier domain

Learning a signal representation = learning to “navigate” on the manifold

Transport learning on manifold - Culpepper & Olshausen, 2004 - Connor, Canal & Rozell, 2020
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Learning manifold representations

Learning how to transport points on
the manifold from anchor points

Define model-based signals as barycenters according to some metric ¢

d
X = argmin_ 2 /liz(z, ®;)
i=1

To be learnt

April, 13th 2022 8



Learning manifold representations

Autoencoder-like

Learn W and P

@ Encoder

Learn a non-linear

Can be plugged

) Decoder into standard
minimisers

“compressed”

representation

Bobin, Carloni-Gertosio, Bobin, Thiam, 2021
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Learning manifold representations

{Xj}—”

Training set

\9;} —

Anchor points

Interpolatory AutoEncoder (1AE)

Encoder

()

()

X = W(r)«—

Reconstructed

b ¢

Decoder

v

Hw)};, = argminui}i

D(w) — ) 1 D(a))

)
r=) I{o)®@,)

Defined as Euclidean barycenters in the transformed domain

are learnt by minimising the reconstruction error:

The parameters of the networks @ and ¥ (e.g. MLP, CNN etc) . Y. — 106 )D( 0.
min 3 || 3 2 () P()

xjeg

Choosing the can be made automatically by imposing a sparsity constraint in the latent domain

Training set: 5000 FastGB sims, uniform parameters’ distribution

Fully connected residual network, with 3 layers, #hidden units/layer equal for all layers to the input dimension
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PCA vs IAE - dimension of 9 (#of APs or PCs)

Waveform 159 Waveform 3800
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Detection Reconstruction

1.0 == IAE —A— Sparse
~@— Blocktree 251 ~@~ IAE MS
—#- IAE Full
0.8 1
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0.6 1
= a 15 1
& S
0.4
10
0.2 5
0.0 - 0
- l,el T v 101 1'02
Input SNR SNR
False negative rate/input SNR Recovery MSE in dB/input SNR

Slight improvement in recovery MSE

Significant improvement in recovery FNR
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Preliminary application to MBHBs

0 © © © ©
>5H§_>§H>§_>§
i m Convolutional IAE
ncoder
Lyl |l L Interpolator m Lateral connections?® :
convolution & interpolation
°, %Li%..%.%
L >xX e © S R © S N S R N <
o - - o™ ™
Decoder
Training

m 1000 centered MBHB signals, 500 points
m 30 randomly selected anchor points
Testing
m 250 MBHB signals with multiple noise levels each

m Extraction and detection performance

5. Rasmus, A., Raiko, T., & Valpola, H. (2014). Denoising autoencoder with modulated
lateral connections learns invariant representations of natural images.

April, 13th 2022



Preliminary application to MBHBs

Fast Interpolation Barycentric Span Simol Lrming
Orthogonal projection |Projection implex constrain
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Preliminary application to MBHBs

Methodology : Hypothesis testing
m Generate MBHB-+noise and noise-only signals
m Hy : "X, contains only noise"
m Attempt to extract MBHB and compute a metric on X,

m Thresholding based on fixed acceptable false positive rate

Fast Interpolation

FI - SNR = 0 FI-SNR = § Fl - SNR = 10 Fl- SNR = 15
"l Detection performance
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What’s next for GBs ?

- Going towards a full fast GB pipeline

- Estimation of individual events from the galaxy, discrimination resolved/unresolved sources

- Improving the architecture for GB models

- Plugging in the learned models in inpainting algorithm to deal with gaps

- One of the building blocks for unmixing

mfy = 1.25*3:20 —— Truth
. — Full
- Can we derive the parameters ? — capped
1 C.I.
Parameter estimation sin(B) = —0.50§:8}
Decoder &
Encoder 3
A = -2.5233%1
s| @ [ w3 A |
code IR g ,ﬁ; j i
- - » A D 'sbé'c»'%'@ ;‘ 4’ ;"' o
' aa"d'f @«Pa‘e‘ 27 a7 a7 % 3% 27 27 27 A
T Y mk s sin(#) A

Internship of S.Charpigny
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What’s next for MBHBs and beyond ?

- Going towards a full fast MBHB pipeline
- Building an hybrid inspiral/coalescence model for MBHBs (PhD work of E.Leroy)
- Plugging in the learned models in inpainting algorithm to deal with gaps, application to Spritz

- Can we derive the parameters ?

- Towards a first unmixing algorithm

- Together with Aurore’s work, second basic ingredient for unmixing, application to Sangria
8 8 g app 8

- Beyond
- Applications to other “sources”, glitches ?

- Combining with “purely” non-parametric methods for unknown sources
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Not so different topic ...
Learning to optimise
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General unmixing problems

A linear mixture model

Multispectral observations Sources or components
Spatial distribution
y
X =AS-+N Ill-posed problem:
/' \ Infinite number of
Emission spectra Noise solutions

Unsupervised Source Separation:

Estimation both A and S from X
only
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A complex problem to be tackled

igziéas%(A) + Z(S) + QZ(X, AS)

< < >
Regularization Data fidelity term
Terms
Data fidelity term: - measures a discrepancy between the data and the model

- allows to account for the noise statistics
- general formulation for various mixture models

Regularization terms: - make “better”-posed an ill-posed problem
- favour solution properties for increased interpretability

Sparse/compressible
Representation

Change of representation

Fourier, wavelets,
Learning-based, etc.
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Speeding-up unmixing algorithms

minR(A) + 7(S) + 2(X, AS)

A,S
I |

|
v

Costly S — P, [SH - VP (X, AS(‘))]
Iterative algorithms A ...

Algorithm unrolling

Each layer “mimics”

a single iteration
X ) A

|
v

Recurrent neural network

Learn “algorithmic” hyperparameters

e.g. gradient stepsize, Hessian ...
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Speeding-up unmixing algorithms

et et Standard algorithm (PALM)
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Learning-based R
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(L-PALM) Regularisation parameter

Results on simulated Chandra
RNN with 15 layers

Faster (up to 4 orders/magnitudes)
Better (implicit regularisation)

than standard algorithms

Fahes, Kervazo, Bobin, Tupin, ICLR 2022
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What to take away

Towards hybrid non-parametric/ML-based models/method’s

- for fast analysis
- flexible framework to deal with/account for systematics/artefacts

- discovery/recovery of badly/unknown events

0 IAE: https://github.com/jbobin/IAE
GB codes : https://github.com/GW-IRFU/gw-irfu

To be explored:
- Speed up/improve the recovery based on algorithm unrolling

- Speed up param. est. (e.g simulation-based inference ?¢)

- Uncertainty quantification (e.g Bayesian deep learning, etc)
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https://github.com/jbobin/pyGMCALab
https://github.com/GW-IRFU/gw-irfu

