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@ From cosmology to quantum optics
© Master equations in cosmology

© Benchmarking cosmological master equations
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The standard model of cosmology
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Quantum origin of cosmic inhomogeneities

10 seconds 1 second 100 seconds 380 000 years

Beginning
of the

Universe &2

Inflation Formation of Light and matter Light and matter

Accelerated expansion  light and matter are coupled separate

of the Universe Dark matter evolves - Protons and electrons.
independently: t starts atoms
clumping and forming « Light starts travelling
a web of structures freely: it will become the

Cosmic Microwave
Background (CMB)

« Tiny fluctuations: Frequent collsions As the Universe expands, Last scattering of
the seeds of future between normal matter porticles collide less light off electrons
ond light + Polarisation

+ Grovitational waves?

Quantum fluctuations of the primordial vacuum seed all the structures of the
Universe = Understanding this mechanism is crucial.
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Simplest attempt: slow-roll inflation

@ A single scalar field, the inflaton ¢, slowly rolling along its potential
for a sufficiently long time:

= exponentially expanding universe (quasi de-Sitter)

@ shrinking Hubble sphere: solve the Hot Big Bang puzzles;
@ quantum fluctuations amplification: seed structure formation.
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The primordial cosmology curse

© All observations are consistent with single-field inflation.

@ All early universe models rely on multifield settings.

As early universe physicists, we need to understand:
@ The emergence of single-field slow-roll pheno from multifield models;
@ The role of extra fields during inflation.
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A minimal approach

Three observations:
@ Single-field slow-roll inflation provides an excellent fit of the data.
@ At some point, inflation must end: couple to SM fields.

© UV-completions of inflation often introduce new degrees of freedom.

Effective ; ..
single-field What is the quantum description of
system the effective single-field system?

Irrelevant dof:
UV & SM fields
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@ From cosmology to quantum optics
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From cosmology to quantum optics

An example of extra ingredient: spectator field

V(P ®;) @D,

Figure: Adiabatic and entropic perturbations [credits: L. Pinol]

@ WEFT result: field stabilised, just a speed of sound at linear order.

@ OQS result: curvature perturbations decohere while interacting with
isocurvature modes [Prokopec & Rigopoulos, 2007].
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The early universe as an Open Quantum System (OQS)

@ By integrating out the
environment, the system

dynamics becomes non-unitary.
Total System

@ Cosmological perturbations are
System described by an OQS with
dissipation and decoherence.
Environment
@ They experience energy
exchange and information loss
into the environment.

Can we build an effective formalism which encompasses WEFT unitary
results and OQS non-unitary evolution 7
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From cosmology to quantum optics

The lab-based experiments wisdom

Environment:

- weakl\//\specified V(q)l: 4’2) @,

Interactions

System:
- measurable T~ (I)l

Modelled by
Master Equations
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© Master equations in cosmology
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Master equations in cosmology

The master equation zoo

@ Fundamental observables are correlators
<@1@2 - @> (t)=Tr [61@2 - @n,ared(r)]
@ Master Equations (ME) are dynamical equations for pred(t)

dpred
dt

@ There exists a whole bestiary of MEs [Breuer & Petruccione, 2002]

Born Approximation Markov Approximation

I TCL(20) = NZ ME | | TeL(n) I | TCL(4) | | TL2) I | Bloch-Redfield ME I | GKSL ME |

_ —

arkovian/Out-of- Markovian/At
m environment equilibrium environment
At which level should we work in cosmology ?
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Master equations in cosmology

Master equations in cosmology

In quantum optics, Markovian MEs are ubiquitous:
@ Environments are large;
@ Environments are stationary;

© Environments are at thermal equilibrium.

In cosmology, these assumptions must be reassessed:
@ Background is symmetric, curved and dynamical,
@ There is no stationary |out) state;

© Cosmological environments can be out-of-equilibrium.
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Master equations in cosmology

Assessing cosmological master equations

@ ME have already been applied in cosmology, see [Boyanovsky, 2015], [Burgess, Holman &
Tasinato, 2015], [Hollowood & McDonald, 2017], [Martin & Vennin, 2018], [Brahma, Berera & Calderén-Figueroa,
2021], - - -

@ ME were designed in a specific context and need some adaptations
= Working in curved-space implies to reassess:

e approximation schemes;
e regimes of validity.

@ We benchmark the ME program on an exactly solvable model:

o We have analytic control on the system dynamics;
e We compare exact and ME results.
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Benchmarking cosmological master equations
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© Benchmarking cosmological master equations
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The curved-space Caldeira-Leggett model

@ Action for the field sector:
System

il

Ir
1 1
S=— [ d*/— detg( [Eg’“’a,m&,@ + §m2<p2]
1 yny 1 2.2 2
+ 58" 0ux0ux + SMEX| + Aex
E Environment 1 IInteractionI

@ Field redefinition: rotation in field space of

0 L arcta 25

= ——arctan | ———
2 M2 — m?

decouple the two sectors: fully integrable model.

@ Gaussian system:
o All information contained in the system covariance X;
o Quantum information properties: vy = det [}:W,]_1 /4.
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Benchmarking cosmological master equations

Integrating out the environment

@ In the Fock space: a master equation, with Z = (V,,, py) "

Unitary evolution

Ir il

dﬁred _ _ilO 7(LS) ~
dn == {Ho(n) +H (77)> pred(n)]

X0 22— (2070

Non-unitary evolution

@ In the phase space: a Fokker-Planck equation, with z = (v, p,)T

Unitary evolution
Ir i

= {Ho(n) + HES)(n), Weea(n)}

d Wred
dn

) 1 P We
81200 Y o 2 Woa()] — > 3 oD ()] e
i i ij 1~y
L I|

Non-unitary evolution
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Benchmarking cosmological master equations

Transport equation and non-perturbative resummation

@ ME generates an effective transport equation:

d};% =w(HY + )%, — Xy (HY + A)w - 28T, — wDw

Unitary evolution Non-unitary evolution

@ ME studied in cosmology for its ability to resum late-time secular effects
[Boyanovsky, 2015], [Burgess, Holman & Tasinato, 2015], [Brahma, Berera & Calderén-Figueroa, 2021]

@ Resumation obtained when solving the transport equation
non-perturbatively, considering ME as a bona fide dynamical map.
4 0
=Pt = [14 aX*log (—kn) + A+ -] =Q)
(non-pert) __ a(ren) jaA* log(—kn) % (0)
D 4 = Al""e .+
@ Important result: if apply the ME program directly, the resummation is
spurious. Meaningful resummation requires to first remove terms that vanish
in the perturbative limit.
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Benchmarking cosmological master equations

Benchmarking cosmological ME

@ For the ME to be an interesting tool, it needs to do better than standard
techniques.

@ Benchmark against standard perturbation theory (SPT) results: in-in
formalism at linear order:

@ Write down mode functions equations of motion;
@ Solve them perturbatively order by order;
© Compute observables from mode functions decomposition.

@ We compare ME and SPT against exact results on:

© Accuracy on the system covariance X ;
@ Ability to recover the purity v = det [Zw]_l /4.
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Benchmarking cosmological master equations

Results on the power spectra

Hlga 1077 4
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Results on the purity

exact
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Conclusion

Summary and outlook

@ In cosmology, we need to deal with elusive environments.

o EFT and OQS separate things we know from things we don’t.

@ ME may allow us to go beyond standard tools.

e Approximation schemes et regime of validity must be reassessed.

@ We benchmarked cosmological ME on an integrable model:

© Non-perturbative resummation is non trivial to implement.
@ Improved precision on observables and QI properties.

Future directions:

@ Non-linear theory: Self interactions in the environment (eg: po®)
= Which relation with PNG generation 7 [Assassi et al., 2013]

@ Quantum corrections to the primordial tensor spectrum:
= Computed perturbatively using ME formalism by [Brahma et a1, 2022]
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Thank you for your attention !
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Details on the curved-space Caldeira-Leggett model
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@ Details on the curved-space Caldeira-Leggett model
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Details on the curved-space Caldeira-Leggett model

Flat vs curved-space Caldeira-Leggett model

Flat space Curved space

@ System: a harmonic oscillator of

@ System: a parametric oscillator
frequency

of frequency

2 _ 42 2
=k“+m 2:k2+m2a2—a”/a
@ Environment : large number of

_ . e Environment : large number of
harmonic oscillators

parametric oscillators BUT

@ Linear interaction: @ Linear interaction + symmetries

(S)~(E)
Hlnt ZAZ Vi )V,S Hlnt )\2 2~ (S) (E)
= system interacts with = system only interacts with
infinitely many dof. ONE environmental dof.
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TCL, coefficients

Du(n) = —4A432(77)/ dn'a*(n') Im{ ps (v (n') } Re{ v (n)vi(n') }

70

Dio(n) = 2A4a2(n)/ dn'a’(n') Im{ v (n)vi (n') } Re{vi()vs(n') }

70

Dyi(n) = —4/\432(77)/ dn’a*(n') Im{ ps(n)vi(n) } Im{ vy (n)vi(n') }

A12(77):2/\432(77)/ dn’a* (') Im{ v (n)vi (n') } Im{ vy () v (') }

@ Can we compare them with exact counterparts ?

o Fundamental object: system covariance X,
e Look at the exact and effective transport equation:

dx
S -w (9 +a) £, - £pp (HO + A)w - wDw — 2815,
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Details on the curved-space Caldeira-Leggett model

Comparison of the coefficients

@ Exact coefficients:

A4 2
D11 = —ma s A, 12=0
204 A
2 2
De11 = “wvE 2l 212, Degiz = M2 —m2? D INR T

@ TCL;, coefficients

© In the super-Hubble regime | — kn| < 1;
@ When the environment is heavy M > H;

A=D1 + AT (o) +ho.,, A= Bec1r + AT (o) + hoo.
Di; = Doy 11 + D3 (0) + h.o., D1z = Dex12 + D" (10) + hoo.

where the matching is at order O(\*).
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Details on the curved-space Caldeira-Leggett model

Spurious terms in the super-Hubble regime

When M > H,
Dspm:i;&/ﬁ(@)” b3
11 Vé+u§<H4z2 z v 92

dity V2 + p2 H* z

gur 1 1 M K2 /2932 3
o= L R (®) (-
Vo Vg + z z
1 1 Ak (@)3/2
4vy v2 + 2 H* z

V4
3 2m\? 3 [/2M\?
2\/1_<3H>’ and “X—z\/(sH) -1
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Details on the curved-space Caldeira-Leggett model

Analytic results on the covariance

Integrating the transport equation:
=2 [ dn' Bra()
Top(n) =e f”o ” gLS(UaWO)Z@SO(TIO)gES(na o)

B n dn/ei2 f:] dn”AIZ(T]”)

o

gis(n.n) [wD(n)w] gls(n. 7).
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SPT results (1)

Mode function decomposition

~

Vo (1) = Vi (0)ap + Vi, (1)L + Vi (m) 3y + V3, ()L
V(1) = o ()3 + V5, (0)3L, + vix ()3 + Vi ()3

which obey equations of motion

Vo, + wi(ﬂ)vsw = N2 (n)vyy

Vi, cuf((n)vW = —\2%(n)Vpy
and

V)/(/X + w>2<(77) Vxx = _/\232(77) Vox

Vo + wi(n) Vo = —A%a° (1) vyy
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SPT results (2)

Solution order by order

@ Zeroth order:

and viQ(n) = v(n) = 0.

@ First order:

VB = =23 [ ) Im{ v () ) b ()

0
n

V)(({p)(n) =—=2X [ dmpa®(m) Im{vy (n)vi(m) }ve(m).

Correlators are evaluated in the Heisenberg picture

=(n) = 5 e [{20n). 2" () } 7o)
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Details on the curved-space Caldeira-Leggett model

Power spectra and late-time resummation

1099 — M2=10H2 L —mmmm—eeen
—— M?=100H?> ~~
10-14 —— M?=1000H?

10—2 4

5l
W 10734

1074_
-5
107y — 1o
-—- pert
1076 . : . : : i
10 20 30 40 50 60

[N — N
Late-time resummation:

2 4

sTCL s e i IN=N-| 5-(0)
v M4 —m= H’

pp 2 €7 P
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Purity and coupling

1.0 A
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Connections with alternative methods
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© Connections with alternative methods
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Connections with alternative methods

The environment as noises

Classical Brownian motion

@ Langevin equation
dO = {H, O0}dt + d¢

@ Fokker-Planck equation

dp
< = LeelP)

@ Wiener path integral [wiener, 1923]

p_ / Dge—5(

Cosmological master equations

Quantum Brownian motion
@ Stochastic Schrédinger equation
dy) = —i {/f/, (5} dt +dé

@ Master equation

dﬁred
dt

= V[ﬁred]
@ Influence functional [vernon, 1959]

Z)\red = /7)(250iI [¢oi] ﬁred,O
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TCL, Fokker-Planck equation

The reduced Wigner function evolves according to

d Wred
dn

= {FIO 4 H(LS)’ Wred}

0 1 2
+A12 Z,: 9z (ziWred) — > Z [wDw];; 0z:0z;’
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(Non-)Markovianity and CPTP dynamical maps
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© (Non-)Markovianity and CPTP dynamical maps
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(Non-)Markovianity and CPTP dynamical maps

Example 1: an exact ME

Master equation: dynamical equation for the quantum state of the system.

@ Start with Liouville-von Neumann equation

L~ —ig [Fimn). 1)) = ££(70)

@ Introduce projectors p +— Pp = pred @ pr and Qp = p — Pp
© Rewrite dynamics as
i ~ _ 2 " d IIC ! ~
Pp(n) =g n'K(n,n")Pp(n)
7

K(n,n'): memory kernel which depends on the coupling and the
environment.
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Example 2: an effective ME

@ Expand in powers of the coupling constant

d%%(n) = 3 g K)ol

@ Lowest order leads to the non-Markovian ME

dg:;d = _g2 ‘/n: dn’ Tre [ﬁint(n)7 [ﬁint(n/), Pred(1) ® pEH

© Error function &2 ~ g2(|Ks(n)||/|1K2(n)I].
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Example 3: a Markovian ME

@ When the environment is a bath (large number of dof, thermal equilibrium),
the dynamics is Markovian, the system admits a semi-group evolution

V(m)V(n) = V(m +n)

@ It implies a specific form for the ME [Lindblad 1976]

dpred A TEREEN 1.5 NS
d; = —j {H(n),pred(n)} + Zk:w [Lkpred(n)’-k 5 {Lk’-k,Pred(”)}}

© It relies on a fast decay of temporal correlations in the environment.

Question: At which level should we work in cosmology 7
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(Non-)Markovianity and CPTP dynamical maps

The emergence of Markovianity

@ Fast decay of environmental correlations

K= (') =25 6(n—n')

graining

ME reduces to a GKSL equation for which the dynamical map reads
. 5~ ~ oy s
L [pred] = —I {Hapred:| + v (Lpred LT - 5 {LTLapred})

GKSL equation is CPTP: physical consistency of the solutions ensured.

@ Non-Markovian evolution/non-semigroup dynamical map implies dissipator
matrix non-positive semi-definite.

@ Non-positive semi-definite dissipator matrix is a generic feature of
Non-Markovian OQS: not directly related to CPTP properties.

@ Curved-space Caldeira-Leggett model ME belongs to the class of Gaussian
non-Markovian ME = CPTP ensured by [pissi & Ferialdi, 2014].
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@ Late-time resummation, ME and DRG
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Late-time resummation, ME and DRG

What has been resummed ?

@ In the exact theory, there is only one 1PI:

@ In the effective theory, there is an infinite tower of 1PI:

TCL> TCL4 TCLe
e e SRR P

one for each of the TCL cumulant.

@ Moreover, there are non-unitary contributions from diffusion and
dissipation which do not have diagrammatic representation.

@ Hence, the question of knowing which diagram has been resumed
is ill-posed. This feature is shared with WEFT and the DRG.
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Late-time resummation, ME and DRG

Late-time resummation technique
FO”OWing [Boyanovsky, 2015], [Brahma et al., 2021],
Vo)V (n)) = v_(n)v_(n)<ﬁ;>+v_( v () (QuPs + P, Q)
v (v () (Q2) = va(mvi(n) (@2 )

with

TR (@2)

obtained from the TCL, ME.

In the curved-space Caldeira-Leggett model, leads to
1 H2 A4
TCL —vo w2z o5 n(—kn) s (0)
st De voM H Zw,

where late-time secular effects have been resummed.
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Late-time resummation, ME and DRG

Late-time resummation and the DRG

o ——————————— e e e TcL
10—1 o o ¢ o o & o o e § e ¢
; —-= IR resum
10-24
— In
10-34 — I12
— I
e 1074
<
10—5.
10—6_
10-74
108 4 d = o
10 20 30 40 50 60
|N — N«|

This resummation technique shares many features with the DRG [Burgess et ar., 2009].

Are they equivalent ?
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© TCL4 master equation
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TCL4 generator

n m 72
Ka(n) = / dm / dmp / dns
7o 70 70

[735(77)5(771)5(772)5(773)77 — PL()L(m)PL(n2)L(n3)P

—PL)L(2)PL()L(n3)P — PL(n)L(n3)PL(m)L(n2)P
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TCL4 master equation

TCL4 master equation

dﬁTgL4 d'ﬁTgLQ 8 2 n ) L ) 2 )
—— = —— —4X°a"(n) [ dma (m) dmpa®(n2) dnsa®(ns)
d’l’] d’f] o o o

X{ Im{ vy, () v (112) } Re{ vy, (m)vis (13) } Im{ vo () v (12) } [Veo (1), [Vip (3, Prea ()]

+ilm{vy (v (m2) } Im{va (m) vic(n3) } Im{vio (m)vis (12) } [Veo (0), {Vep (m3), Prea () }]
+Im{ vy (m)vi (m3) } Re{ vy () vis (m2) } Im{ v (m) vis (n3) } [V (1), [Vio (m2), Prea(m)]]
+ilm{vy (v (m3) } Im{vae (m) v (m2) } Im{ o (m)vis (13) } [Vio (0), {Vep (m2), Prea () }]

+[ Re{va(mvi(ns) } Im{vac(m)vic(m2) } +Im{ v (m)v5 (ns) } Re{ v (m)vx (m2) }

Im{ v (112)v;5 (n3) } [V (1), [Vio (1), e ()] }
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TCL4 master equation

Equivalence between perturbative TCL and in-in formalism

Cosmologists are used to compute correlators using the in-in formalism.

@ At linear order, it is similar to the perturbative results presented
above.

We have shown that:
@ Perturbative TCL; is equivalent to O(A*) in-in.
@ Perturbative TCLy is equivalent to O(A8) in-in.

Probably the proof extend at all order. Indeed, from the TCL cumulant
expansion, all terms at a given order are included. It should ensure the
matching with the in-in formalism at a given order.
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© An OpenEFT for the early universe
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The OpenEFT formalism

GR non- IR modes
linearities [kn| < oH

UV modes: |kn| > oH

IN [Brahma et a1, 2020], the leading cubic con-
tribution is

M2
Hine = =2 [ dPxeha?0%

@ UV modes backreact on the IR

dynamics.
@ They induce decoherence of the
IR sector.
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