

Constraining spontaneous black hole scalarization with gravitational waves

2204.09038

LEONG KHIM WONG

with C HERDEIRO and E RADU

GdR Ondes Gravitationnelles at IJCLab, Orsay • 20 Jun 2022

I. Hairy black holes

A stationary, asymptotically flat solution that is not Kerr and has a nontrivial scalar-field profile

$$S = \frac{1}{16\pi} \int \sqrt{-g} \, \mathrm{d}^4 x \, \left(R - 2(\partial \phi)^2 - V(\partial \phi)^2 - V(\partial \phi)^2 - V(\partial \phi)^2 \right)^2 \, d^4 x \, d$$

The only suitably regular, stationary, asymptotically flat vacuum black hole solutions are those for which the metric is Kerr and the scalar is everywhere a constant.

[Hawking 1972; Sotiriou and Faraoni 2012]

$$\phi = \phi_0 : V'(\phi_0) = 0, \quad V''(\phi) \ge 0$$

Scalar–Gauss–Bonnet theories

$$S = \frac{1}{16\pi} \int \sqrt{-g} \, \mathrm{d}^4 x \, \left(R - 2(\partial \phi)^2 + \lambda^2 \right)$$

 $\mathscr{G} = R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} - 4R^{\mu\nu}R_{\mu\nu} + R^2$ is the Gauss–Bonnet invariant

 λ is a coupling constant with dimensions of length

 $f(\phi)\mathcal{G}$

The equation of motion for the scalar field is

$$\nabla^{\mu}\nabla_{\mu}\phi = -\frac{1}{4}\lambda^{2}$$

If $f'(\phi) \neq 0 \ \forall \phi$ finite Any spacetime with $\mathscr{G} \neq 0$ has $\phi \neq \text{constant}$ All black holes have scalar hair

 $\lambda \lesssim 4.4~km$ [Lyu, Jiang and Yagi 2022]

If $\exists \phi_0 : f'(\phi_0) = 0$ $(g_{\text{Kerr}}, \phi_0)$ is a valid solution, but not unique Tachyonic instability for some (M, S, λ)

 $f'(\phi) \mathscr{G}$

Non-Kerr solutions are "spontaneously scalarized"

Scalar–Gauss–Bonnet theories
$$S = \frac{1}{16\pi} \int \sqrt{-g} \, \mathrm{d}^4 x \, \left(R - 2(\partial \phi)^2 + \lambda^2 \right)^2$$

Dilatonic [Kanti et al. 1996]

$$f(\phi) = \frac{1}{\beta} e^{\beta \phi}$$

Shift symmetric [Sotiriou and Zhou 2014] $f(\phi) = \phi$

Quadratic

[Silva et al. 2018]

Gaussian [Doneva and Yazadjiev 2018]

$$f(\phi) = \frac{1}{2}\phi^2$$

$$f(\phi) = \frac{1}{2\beta} (1 - e^{-\beta \phi^2})$$
$$f(x \beta) = 6$$

 $^{2}f(\phi)$ G

$f'(\phi) \neq 0 \ \forall \phi$ All black holes hairy

 $f'(\phi_0) = 0, f''(\phi_0) = 1$ with $\phi_0 = 0$ Spont. scalarization Because the field equations are invariant under the rescaling $\lambda \mapsto b\lambda$, $r \mapsto br$ for any constant b > 0,

the stationary, axisymmetric solutions $\Xi = (g_{\mu\nu}, \phi)$ are such that

$$\Xi \equiv \Xi \left(r, \theta; \lambda \right)^{\Lambda}$$

The scalar charge Q is read off from the asymptotic expansion

$$\phi = \phi_0 - \frac{Q}{r} + O(r^{-2}), \quad Q$$

Scalar hair is of secondary type [Coleman, Preskill and Wilczek 1992]

 $= \lambda \times f\left(\frac{M}{\lambda}, \frac{S}{M^2}\right)$

I. Gravitational-wave constraints

Hairy black holes = scalar waves

A black hole of mass M probes a certain range of values of λ Slowly spinning black holes probe a larger range

$p(\lambda \mid d) = \int d\theta \ p(\lambda, \theta \mid d)$

$p(\lambda, \theta \mid d) \propto p(d \mid \lambda, \theta) \pi(\lambda, \theta)$

Assume detector noise is stationary, Gaussian, and uncorrelated

[Cutler and Flanagan 1994]

$$+\frac{2}{3}\Delta\alpha^{2}\nu^{2}(M\Omega)^{8/3} + \cdots$$

$$\int$$
Scalar radiation
(Dipolar)

$$\Delta\alpha = \frac{Q_{1}}{M_{1}} - \frac{Q_{2}}{M_{2}}$$

Decompose the waveform into spherical harmonics

$$\tilde{h}_{\ell m}(f) = \mathscr{A}_{\ell m}(f)$$

Phase:
$$\Psi_{\ell m} = \Psi_{\ell m}^{(\text{GR})} + \delta \Psi_{\ell m}$$
$$\delta \Psi_{\ell m} = \frac{5m}{14\,336\,\nu} \left(\frac{Q_1}{M_1} - \frac{Q_2}{M_2}\right)$$

–1PN scalar dipole radiation

[Sennett, Marsat and Buonanno 2016]

 $e^{i\Psi_{\ell m}(f)}$

 $Q_A \equiv Q_A(M_A, S_A, \lambda)$ $\frac{Q_2}{M_2} \int_{-\pi}^{2} \left(\frac{2\pi M f}{m}\right)^{-\pi/3}$

Log uniform (Restricted to $\lambda \in [1, 10^3] M_{\odot}$) $p(\lambda, \theta \mid d) \propto p(d \mid \lambda, \theta) \pi(\lambda, \theta)$ Same as in GR GW190814 + GW151226 $(\chi_1 \ll 1)$ $\theta = \{M_1, M_2, \chi_1, \chi_2, \dots\}$

Compare theories with different values of λ by computing

$$B(\log \lambda) = \lim_{\lambda_0 \to 0} \frac{p(1)}{p(1)}$$

A theory with Bayes factor B is 1/B times less likely than GR is at being the correct underlying description of the signal

$$B \le 0.1$$
 : 56 $M_{\odot} \lesssim$

 $\frac{\log \lambda \,|\, d}{\log \lambda_0 \,|\, d}$

 $I_{\odot} \lesssim \lambda \lesssim 96 \ M_{\odot}$

Massless scalar-tensor theories

All objects have scalar charges

Spontaneous scalarization

*See also [Danchev, Doneva and Yazadjiev 2022] for binary pulsar constraints

Future directions

- Improved waveform templates with higher PN effects; merger-ringdown portion?
- Update constraints with more GW events, especially from BHNS systems
- Constrain related models like spin-induced scalarization