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Hairy black holesI. 
A stationary, asymptotically flat solution that is 
not Kerr and has a nontrivial scalar-field profile



The only suitably regular, stationary, asymptotically flat 
vacuum black hole solutions are those for which the 
metric is Kerr and the scalar is everywhere a constant.

S = 1
16π ∫ −g d4x (R − 2(∂ϕ)2

ϕ = ϕ0 : V′ (ϕ0) = 0, V′ ′ (ϕ) ≥ 0

[Hawking 1972; Sotiriou and Faraoni 2012]

− V(ϕ))



S = 1
16π ∫ −g d4x (R − 2(∂ϕ)2 + λ2f(ϕ)%)

 is the Gauss–Bonnet invariant% = RμνρσRμνρσ − 4RμνRμν + R2

 is a coupling constant with dimensions of lengthλ

Scalar–Gauss–Bonnet theories



II

∇μ ∇μϕ = − 1
4 λ2f ′ (ϕ)%

The equation of motion for the scalar field is

I If  finite 
Any spacetime with  has constant 
All black holes have scalar hair

f ′ (ϕ) ≠ 0 ∀ϕ
% ≠ 0 ϕ ≠

If ∃ϕ0 : f ′ (ϕ0) = 0
 is a valid solution, but not unique(gKerr, ϕ0)

Tachyonic instability for some (M, S, λ)
Non-Kerr solutions are “spontaneously scalarized”

λ ≲ 4.4 km [Lyu, Jiang and Yagi 2022]



Shift symmetric
[Sotiriou and Zhou 2014]

S = 1
16π ∫ −g d4x (R − 2(∂ϕ)2 + λ2f(ϕ)%)

Scalar–Gauss–Bonnet theories

f(ϕ) =

f(ϕ) =Dilatonic
[Kanti et al. 1996]

ϕ

1
β eβϕ

Gaussian
[Doneva and Yazadjiev 2018]

Quadratic
[Silva et al. 2018]

f(ϕ) = 1
2 ϕ2

f(ϕ) = 1
2β (1 − e−βϕ2)

f ′ (ϕ) ≠ 0 ∀ϕ

f ′ (ϕ0) = 0, f ′ ′ (ϕ0) = 1
with ϕ0 = 0

All black holes hairy

Spont. scalarization

fix β = 6

II

I



Because the field equations are invariant under the rescaling 

λ ↦ bλ, r ↦ br for any constant b > 0,

the stationary, axisymmetric solutions  are such thatΞ = (gμν, ϕ)

Ξ ≡ Ξ (r, θ; λ, M
λ

, S
M2 )M S

λ

The scalar charge  is read off from the asymptotic expansionQ

ϕ = ϕ0 − Q
r

+ O(r−2), Q = λ × f ( M
λ

, S
M2 )

[Coleman, Preskill and Wilczek 1992]Scalar hair is of secondary type



≡
S/

M
2

[Numerical solutions by Cunha, Herdeiro and Radu 2019]



≡
S/

M
2
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Gravitational-wave constraintsII. 



Hairy black holes   =   scalar waves



 too smallM/λ  too largeM/λSpontaneously 
scalarized black hole

KerrKerr

A black hole of mass M probes a certain range of values of λ
Slowly spinning black holes probe a larger range



=p(λ |d) ∫ dθ p(λ, θ |d)



p(d |λ, θ) π(λ, θ)∝p(λ, θ |d)



Assume detector noise is stationary, Gaussian, and uncorrelated

p(d |λ, θ) ∝ ∏
a ∈ {detectors}

exp( − 2∫
fhigh,a

flow,a

df
| d̃a( f ) − h̃a( f; λ, θ) |2

Sn,a( f ) )

[Cutler and Flanagan 1994]

Signal Waveform

Noise PSD

RingdownMergerInspiral

fhighflow

?



Outgoing flux = 32
5 ν2(MΩ)10/3 + 2

3 Δα2ν2(MΩ)8/3 + ⋯ℱ

Binding energy = − M2ν
r

− Q1Q2
r

+ ⋯E (M = M1 + M2, ν = M1M2/M2)

Newton’s inverse square law Extra attraction mediated by the scalar

1

2

Gravitational radiation 
(Quadrupolar)

Scalar radiation 
(Dipolar)

Δα = Q1
M1

− Q2
M2

Balance equation
dE
dt

= ℱ3

Higher-order terms



h̃ℓm( f ) = 5ℓm( f ) eiΨℓm( f )

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

[Sennett, Marsat and Buonanno 2016]
–1PN scalar dipole radiation 

Phase:

Amplitude:

Ψℓm = Ψ(GR)
ℓm + δΨℓm

Decompose the waveform into spherical harmonics

δΨℓm = 5m
14 336 ν ( Q1

M1
− Q2

M2 )
2

( 2πMf
m )

−7/3

5ℓm = 5(GR)
ℓm

QA ≡ QA(MA, SA, λ)



p(d |λ, θ) π(λ, θ)∝p(λ, θ |d)

Same as in GR 
θ = {M1, M2, χ1, χ2, …}

Log uniform 
(Restricted to )λ ∈ [1,103] M⊙

GW190814 + GW151226
(χ1 ≪ 1)



GW190814



GW190814



GW190814

Both black holes are Kerr



GW190814

Secondary black hole 
can scalarize



GW190814

Primary black hole 
can scalarize



GW190814

GW151226

Combined



B(log λ) = lim
λ0→0

p(log λ |d)
p(log λ0 |d)

Compare theories with different values of  by computingλ

A theory with Bayes factor  is  times less likely than GR is at 
being the correct underlying description of the signal

B 1/B

56 M⊙ ≲ λ ≲ 96 M⊙B ≤ 0.1 :



Massless scalar-tensor theories

All objects have scalar charges Spontaneous scalarization
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Brans–Dicke
[Seymour and Yagi 2020]

Damour–Esposito-Farèse
[Zhao et al. 2019]

Scalar-Gauss-Bonnet I
[Lyu, Jiang and Yagi 2022]

Scalar-Gauss-Bonnet II
This work*

*See also [Danchev, Doneva and Yazadjiev 2022] for binary pulsar constraints



Future directions

✦ Improved waveform templates 
with higher PN effects; 
merger–ringdown portion? 

✦ Update constraints with more 
GW events, especially from 
BHNS systems 

✦ Constrain related models like 
spin-induced scalarization


