

iP.2

nstitut national de physique nucléaire et de physique des particules

The Hotension

new fundamental physics or astrophysical bias

This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement n°759194 - USNAC)

m.rigault@ipnl.in2p3.fr

Context of Research | ACDM Works

Only 6 free parameters

Baryon Acoustic Oscillation

Clusters

Weak Lensing

Baryon Nucleosynthesis

Context of Research [ACDM Works, except when it doesn't !

Only 6 free parameters | *but "Λ" and "CDM"*

Type Ia Supernova Cosmology

 \mathbf{Z}

Type Ia Supernova Cosmology | H₀

 \mathbf{Z}

Direct Distance Ladder | SH0ES

RIGAULT

Indirect determination of *H*₀

Ho Tension | SHOES vs. Planck

RIGAULT

Are Supernovae & CMB in tension ? No!

Inverse Distance Ladder

Extending the Standard Model of Cosmology

RIGAULT

Ho Tension | Change the model?

Extending the Standard Model of Cosmology

RIGAULT

Direct Distance Ladder | SH0ES

RIGAULT

The Progenitor issue | Astrophysical biases

Rigault et al. 2020

High fraction of young stars

 $lsSFR \propto \frac{\# Young Stars}{\#}$ # Old Stars

Rigault et al. 2020

Astrophysical Bias affecting H₀

RIGAULT

Rigault et al. 2015

3% bias on H_0

So a 2 km s⁻¹ Mpc⁻¹ shift

Total current SH0ES error budget **1.04 km s⁻¹ Mpc⁻¹**

SH0ES "corrected" \sim 71 ± 1.5 km s⁻¹ Mpc⁻¹

Rigault et al. in prep. | Rigault et al. 2015, 2020 erc|USNAC

SH0ES rebuttal

"If we mimic the Cepheids selection function and only take Hubble flow SNe Ia from *Spiral* hosts, H_0 reduces by 0.5%"

Riess et al. 2022 | Riess et al. 2016, 2019

Issue: SNe Ia are rare

15 optical systems

O(10) SNe Ia per day at z < 0.1

 \mathbf{Z}

New generation of SNe Ia surveys

O(10) SNe Ia per day at z < 0.1

 \mathbf{Z}

ZTF | Changing the scale of SN Cosmology

Rigault, Smith et al. in prep

Direct Distance Ladder | SH0ES

ZTF Sample *Toward a self-consistant* H₀

Measure " L_{SN} "

Calibrator Sample

Volume limited ZTF-SNeIa < 50 Mpc

Technique TRGB (doable in any galaxy)

Statistics: ~5 per year (~30 by end of ZTF)

Unique photometric system, no absolute photometric calibration issue only relative, which is way easier

RIGAULT

No selection function since both volume limited samples

ZTF for Nearby Supernova Cosmology