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Lovelock theory of gravity

Most general theory of gravity in D dimensions which give
covariant, conserved, second-order field equations in terms of the

metric only
L(D-1)/2]

S:/de\/—g Z anR(™
n=0

RO =1, RN =R, R® =G=R?—4R,,R" + Ry ps R

G = Gauss-Bonnet invariant (natural higher order term, links with
string theory)
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Horndeski theories

Most general scalar-tensor action yielding 2" order equations of motion
Sl o] = [ dtxv=g {2+ Lo Lo+ Ls)
Ly=Gy, L3=-Glp, L4=GiR+ Gax (06— (6 )]
L5 = G5 G — < Gax ((09)° ~ 306 (6 ) + 26,0064
where G = Gk (¢, X) with X = —1¢,0", ¢, = V¢, etc

Usual assumptions: parity-symmetry ¢ — —¢ or shift-symmetry
® — ¢ + ¢ (= Noether current)
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Conformally-coupled scalar field

Most general action with conformal symmetry g, — €27 g,
¢ — ¢ — o of the scalar sector?

S= /d4x\{6_? {R —2)e*” — Be*’ (R +6 (V¢)2)

—a [0 — 46" 6,6, — 406 (Vo) —2(Vo)*| |

® Three parameters o, 3, A

® Geometric equation R + %g =0

'P. G. S. Fernandes, Phys. Rev. D 103 (2021) no.10, 104065
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Static spherically-symmetric solutions

Ansatz ds? = —f(r)dt? + ?Trrz) +r2dQ%, ¢ =¢(r)

o} r? 2M ¢

oM
~1-2 4

r r2’

r — o0

Two possibilities ¢ = 0, ¢ = —2a. Focus on the latter: \ = 52/4aq,

2 o —20
f(r):1—|—£ (1—\/1+8a (g+ r4>>, o(r)=1In (W)
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Nature of spacetimes

0 1 2 3
r/M

r/M

Figure 1: Metric function 7(r) for different M/+/|c| for & > 0 (left) and
a < 0 (right). Left: black hole with horizon ri > rschwarzschitd = 2M.
Right: naked singularity or black hole with horizon ry < rschwarzschild
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Going beyond Horndeski by deforming the metric

(g,UJ/7 ¢) (g,uua ¢) with Buv = 8uv + D (¢, X) ¢u¢u

~ S[g,#] = 5[&, ¢] where § is beyond Horndeski:

§[g7¢] :fd4x\/_g{£2+£3+E4+£5+Z4b+25b}

= If (8> &) — (&uv, @) is invertible, then any solution (g2, ¢°)
to the field equations of S gives a solution (g9,,¢°) to the field

equations of S
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Applications

e Construction of healthy non-singular cosmological solutions
(bouncing Universe, Universe with Genesis) only possible
beyond Horndeski?

® Deformation of a stealth Kerr solution to a "deformed Kerr
spacetime" with D (¢, X) = D = cst.3

e Construction of wormholes*

2M. Libanov, S. Mironov and V. Rubakov, JCAP 08 (2016), 037

3T. Anson, E. Babichev, C. Charmousis and M. Hassaine, JHEP 01 (2021),
018

“A. Bakopoulos, C. Charmousis and P. Kanti, JCAP 05 (2022) no.05, 022
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Deformation in spherical symmetry

Seed solution ds? = —f(r)dt? + ?(—rrz) +r2dQ?, ¢ =o(r)
~ d§2 = —f( )dt + m +r2d92

where W (¢, X) =1 — 2D (¢, X) X must satisfy:

e W1 vanishes at a radius ry greater than the horizon, such
that g (rp) = 0 while g (r) > 0 for any r > ng
~> rp = wormhole throat

e W — 1 asr — oo (asymptotic flatness)

® W such that (gu,, ®) — (&uv, @) is invertible
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Wormhole construction

In our case: ¢(r) =1In <\/Tq/5/r) and X = _%

~ define ip = /=22~ = r and choose
B on-shell

22X _ o, f()

_1 C( I S 7 N
(4, X) 1+A(¢/\/W> onshell " 4 (r/ /)

so that

® Throat f (rp) = (ro/\/|3>
* Singularity f (r.) = 3A (&/M)

= choose A so that r, < g
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Figure 2: A (black curve) and A/2 (grey curve), and metric function f (r)
for several values of M/4/]al. Left and right plots correspond to distinct
choices for A. The throat radius ry (the singular radius r.) is the largest
intersection of f (r) with the black (grey) curve. The singularity r, is
hidden by the throat ry on the left, not on the right
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Regular coordinates

ds® = —f(r)dt2+:(rrz)+r2d§22, h(r)=1—+17 f_(;)/a AR (\’/)E'
a+

Change r2 = P, ds? = —F(1)de + 25 4 (P + 13) a2
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Figure 3: Functions F (/) and H (/) (with a =0.1)
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Conclusion

e Conformally-coupled scalar field ~~ black hole and naked
singularity solutions, with well-defined scalar field and
canonical kinetic term

® Generating new solutions through disformal transformations

® Scalar-tensor (beyond Horndeski) theory admitting regular
wormhole solutions



