Dust polarization spectral dependence from Planck HFI data Turning point on CMB polarization foreground modelling

Submitted to A&A e-print: arXiv:2206.07671v1

Alessia Ritacco (OAC - INAF, LPENS)

and Francois Boulanger, Vincent Guillet, Jean-Marc Delouis, Jean-Loup Puget, Jonathan Aumont, Léo Vacher

Outline

- Scientific context
- Constraints on CMB polarization detection accuracy
- CMB dust polarization foreground
 - Power spectra analysis of a recent release of Planck HFI data
 - Dust mean SED in polarization at very low multipoles
 - Spatial variations
 - Frequency dependence
- Conclusions and perspectives

Cosmic Microwave Background polarization

provides a unique insight on the primordial Universe

CMB *B*-modes detection as probe of the inflation

Technical Challenges

- ★ High sensitivity (LiteBIRD satellite, CMB-S4 under development)
- \star Systematic effects control
- \star Precise absolute calibration of the polarization angle
- ★ Foreground emission subtraction

CMB *B*-modes detection as probe of the inflation

Technical Challenges

- ★ High sensitivity (LiteBIRD satellite, CMB-S4 under development)
- ★ Systematic effects control

★ Precise absolute calibration of the polarization angle

\star Foreground emission subtraction

Polarized dust emission

To subtract the sky dust **polarization** we need to have a full-sky modelling \rightarrow So we need to understand how dust polarization behaves

Dust Spectral Energy Distribution

The dust SED in polarization from Planck 2018 results is remarkably well fit by a **single temperature modified black-body emission law** from 353 GHz to 44 GHz.

This brought a significant advance in constraining dust models in astrophysics & for CMB foreground dust component separation methods.

⇒ Characterize spatial variations of polarization SEDs, i.e. the local frequency dependence of polarized intensity and angles)

7

Dust polarization low-& SED spatial variation

Planck HFI maps SRoll2 release

http://sroll20.ias.u-psud.fr/sroll20_data.html

Improved polarization maps w.r.t PR3

Check out *Delouis et al. A&A 629, A38 (2019)* for technical details

Alessia Ritacco (OAC - INAF, LPENS)

A synthetic model based on total intensity spatial SED variations

Modified Black Body function

$$I_{d}(\nu) = \tau_{353} \times B(T, \nu) \times \left(\frac{\nu}{353 \text{ GHz}}\right)^{\beta}$$

$$v_{0}$$

Extrapolation to polarization

$$Q_{\text{model}}(\nu) = \frac{I_{\text{d}}(\nu)}{I_{\text{d}}(\nu_0)} \cdot (Q_{\text{Planck}}(\nu_0) - Q_{\text{Planck}}(\text{CMB}))$$
$$U_{\text{model}}(\nu) = \frac{I_{\text{d}}(\nu)}{I_{\text{d}}(\nu_0)} \cdot (U_{\text{Planck}}(\nu_0) - U_{\text{Planck}}(\text{CMB})),$$

We use T, β maps from Commander & GNILC ⇒ Dust polarization models commonly used by CMB community (models d1 & d11 of PySM)

A synthetic model based on total intensity spatial SED variations

Including instrumental systematics + noise and CMB -10 Q maps Q_{sim} 143 GHz $Q_{\text{sim}}(v) = Q_{\text{model}}(v) + Q_{\text{noise}}(v) + Q_{\text{CMB}}$ $U_{\text{sim}}(v) = U_{\text{model}}(v) + U_{\text{noise}}(v) + U_{\text{CMB}},$ -10 Q_{sim} 217 GHz Two total intensity model considered: **Commander** (Planck Collaboration et al. 2016a) GNILC (Remazeilles+2011) _ -10 μK_{CMB}

Alessia Ritacco (OAC - INAF, LPENS)

CMB-France #3

Dust **polarized mean** SED for low multipoles ℓ_{min} , ℓ_{max} =[4,32]

SED computed for **100, 143, 217** GHz w.r.t v_0 = 353 GHz

 $\gamma_{\rm P}$ is computed for:

- Planck SRoll2 data
- Commander, GNILC models

Galactic masks used for the power spectra data analysis

⇒ We extend earlier studies to brighter Galactic sky emission to gain signal-to-noise ratio

Dust **polarized mean** SED for low multipoles ℓ_{min} , ℓ_{max} = [4,32]

Dust **polarized mean** SED for low multipoles ℓ_{min} , ℓ_{max} =[4,32]

- Mean polarization SED confirmed remarkably close to total intensity (confirming previous results)
- Also consistent within 5% with a Modified Black Body function with T_d =19.6 K and β_d =1.53

Jalessia Ritacco (OAC - INAF, LPENS)

Spatial SED variation of the dust polarization

Residual maps

$$R_Q(v) = Q_d(v) - \gamma_P(v) \cdot Q_{Planck}(v_0)$$

$$R_U(v) = U_d(v) - \gamma_P(v) \cdot U_{Planck}(v_0).$$
Mean
SED
Corrected for
synchrotron at
100,143 GHz

Alessia Ritacco (OAC - INAF, LPENS)

16

Residual polarization maps

Cross power spectra analysis of residual maps

Averaged cross-correlation between multipoles *l*=[4,32]

Contribution from **polarization angles**

Decomposition of the LOS complex **polarization vector** into a random walk process through different *coherent cells* for two pixels at two frequencies, V_1 and V_2 . Frequency dependence of polarization angles introduced by the interplay between dust emission properties and the structure of the magnetized ISM

⇒ Decorrelation of the polarization pattern with frequency

Isolating polarization angle variation effect

We build synthetic Stokes Q and U parameters which depend on the polarization angle

Isolating polarization angle variation effect

Isolating polarization angle variation effect

Converting the residual amplitudes due to variations of the polarization angle to **effective angle** variation $\delta \psi$

$$\sin \delta_{\psi}(\nu) = 0.5 \cdot (\tilde{A}_{\text{res}}^{EE}(\nu) + \tilde{A}_{\text{res}}^{BB}(\nu))^{0.5} \cdot (\gamma_{\text{P}}(\nu) \cdot P(\nu_{0}))^{-1}$$

	100 GHz	143 GHz	217 GHz	
f _{sky} 80%	3.1 ° ± 0.4°	1.4°± 0.2°	$0.8^{\circ} \pm 0.2^{\circ}$	Decorrelation due to polarization angle variation along LOS
f _{sky} 90%	2.7° ± 0.3°	1.1°± 0.1°	0.6° ± 0.1°	
f _{sky} 97%	2.6 ° ± 0.2°	0.8° ± 0.1°	0.5° ± 0.1°	This effect must be accounted for in future CMB dust foreground modelling

Uncertainty on absolute angle calibration < 1° (Rosset et al. 2010)

Frequency dependance Taylor expansion of the MBB emission law

Introduced by Chluba et al. 2017, Mangilli et al. 2021, Azzoni et al. 2021, Vacher et al. 2022a

$$\mathcal{D}_{\ell}(\nu) = \gamma_{P}(\nu)^{2} \cdot \left\{ 1^{\text{st}} \text{ order } \beta \left\{ +\mathcal{D}_{\ell}^{\omega_{1}^{\beta} \times \omega_{1}^{\beta}} \ln\left(\frac{\nu}{\nu_{0}}\right)^{2} +\mathcal{D}_{\ell}^{\omega_{1}^{T} \times \omega_{1}^{T}} \left(\Theta_{\nu}(T_{d}) - \Theta_{\nu_{0}}(T_{d})\right)^{2} +\mathcal{D}_{\ell}^{\omega_{1}^{T} \times \omega_{1}^{T}} \left(\Theta_{\nu}(T_{d}) - \Theta_{\nu_{0}}(T_{d})\right)^{2} +2\mathcal{D}_{\ell}^{\omega_{1}^{\beta} \times \omega_{1}^{T}} \ln\left(\frac{\nu}{\nu_{0}}\right) \cdot \left(\Theta_{\nu}(T_{d}) - \Theta_{\nu_{0}}(T_{d})\right) \right\},$$
st order $T \times \beta \left\{ +2\mathcal{D}_{\ell}^{\omega_{1}^{\beta} \times \omega_{1}^{T}} \ln\left(\frac{\nu}{\nu_{0}}\right) \cdot \left(\Theta_{\nu}(T_{d}) - \Theta_{\nu_{0}}(T_{d})\right) \right\},$

Frequency dependance Taylor expansion of the MBB emission law

- Dust polarization **EE** SED variation well described by MBB deriv. in β
- **BB** SED tends to flat towards high angular latitudes
- Residual maps between the three frequencies are not fully correlated

Conclusions and Perspectives

Power spectra to characterise spatial variations of polarized dust SED for ℓ =[4,32]

- Mean polarization SED confirmed Planck 2018 results.
- Residual maps at 100, 143 and 217 GHz quantifies spatial variations of the dust polarization.
- Residual maps correlated with reference models account for fraction of the total SED variation.

Conclusions and Perspectives

– We detect variations in the polarization angle. They dominate variations of polarized intensity for f_{sky} = 80% and 90%

⇒ It is essential to consider in simulations of Galactic foregrounds and component separation

– **EE** power of residuals is well fit by MBB 1st order β -derivative of MBB.

⇒ It suggests SED variations follow from small variations of MBB parameters within the beam

- This conclusion is challenged by **BB** results, in particular for $f_{sky} = 80\%$, and by cross-spectra that show that the residuals maps at the three frequencies are not fully correlated.

Ritacco et al. 2022 A&A submitted e-print: arXiv:2206.07671v1

This work sets new requirements for CMB dust polarized foreground modelling

