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Outline

A. Overview of SPT-3G 2019/2020
B. Improving the likelihood pipeline

1. Accurate covariance matrices
[EC, Galli, Benabed, Hivon, Lilley 2022]

2. How to treat point sources
i. Inpainting (Gaussian constrained realization)

ii. Analytical expansion of the point source contribution [Gratton, Challinor, ...,
Camphuis in prep]

3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]

2



South Pole Telescope

Ground-based experiment

10-meter diameter telescope observing the CMB
anisotropiesin T and P

State of the art detector SPT-3G, observing during §
years (2019-2023) in the winter - sky patch: 4% of the
sky

3 frequencies 9o, 150, 220 GHz

FWHM :1.7,1.4,1.2 arcmin
(at 9§, 150, 220 GHz) vs Planck 5 arcmin

Final map depth:

* 2.8, 2.6, 6.6 uK-arcmin (T) vs Planck 40 uK
-arcmin

SPT-3G « winter field » (4% vs Planck fullsky)

Sky patch overlaid over thermal dust emission [Dutcher et al. 2021]



Contour plot and posterior distribution of parameters for SPT-3G 2018 data

SPT-3G 2019/2020 = s

Next data release

* Analysis of 2019+2020 winter maps §32 ‘/ _ Dbt o
* factor ~ 4 lower noise than in SPT-3G 2018
s | |
*  Map depth: 5232 a 1 (- -
* ~5/4/15 uK-arcmin (T) o % il J\
*  ~7/6/21 uK-arcmin (pol) ::: .\, |
* Observations will continue through at least e | l'/ - l af
2023 (total of 5 years) .ol an 1 aml aa 1 a - (\
* Goal noise: 2.8, 2.6, 6.6 uK-arcmin (T) °‘§8 0/ . s J&
*  ACDM constraints comparable with ] % SRipE B P . ,
_ | c =3 e
Planck from SPT-3G alone ! I:, o \ ’/' : "

1 | 1 1 | | 1 | 1 1 | |
0.022 0.024 0.10 0.11 0.12 1.036 1.040 0.95 1.00 1.05 1.7 1.8 1.9 65 70 75
Qph? Q.h? 1008yc Ns 10°Ae~2T Ho



Challenges for the future

* Data gets better ! So we need to improve the pipeline, as we want to trust our
cosmological parameters.

* Asis stands, the current pipeline requires a lot of computing ressources to run
mock-observations: simulations that mimic telescope observation of a CMB +
foregrounds sky. We would like to find alternatives to these very expensive
mock-observations.
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B. Improving the likelihood pipeline

1. Accurate covariance matrices
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Camphuis in prep]
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Accurate covariance matrices

Core component of the likelihood

* Accurate CMB covariance matrices
are required for a unbiased
estimation of the cosmological
parameters and their error bars.
[Sellentin&Starck 2019]

* The relative accuracy on the
cosmological parameters is that of
the inverse of the covariance matrix
[Taylor, Joachimi, Kitching 2012]

Power spectrum gaussian likelihood :

—In Z(C| ACDM)




Accurate covariance matrices

Core component of the likelihood

* Previous data release: mock-observations
+ estimate of noise through data, which
requires computing resources and
regularization [Balkenhol et al. 2021]

* Next data release: we would like to have a

(semi-)analytical computation,
precision and no need for regularization

[EC et al. 2022] https:/arxiv.org/abs/
2204.13721. Curved-sky analysis

* Ingredients: mask (introduces coupling)
W and fiducial spectrum C¥"

1000

Power spectrum gaussian likelihood :

—In Z(C| ACDM)

Unbinned correlation matrices full sky vs masked sky
o tull sky o with mask

zero correlations

800
600

400

200 400 600 800 1000 200 400 600 800 1000

T
10~4 1073 1072 101 10Y



https://arxiv.org/abs/2204.13721
https://arxiv.org/abs/2204.13721
https://arxiv.org/abs/2204.13721
https://arxiv.org/abs/2204.13721

Formalism

Covariance matrix of the pseudo-power spectrum

pseudo-power spectrum
(on the masked sky)

/

Cov(C,,C,) =25, ,[W?] Z Cgll @)?}sz[w] Cg;
£t



Formalism

Covariance matrix of the pseudo-power spectrum

pseudo-power spectrum
(on the masked sky)

/

Cov(Cp, Cp) = 2E,, 1WA Y Ch OL[W] O
/ £10

Pure geometric coupling - MASTER matrix

Well known [Hivon et al. 2002]

Scales as @(fﬁl ) (or even @(fﬁl ) using [Louis et al. 2020])

ax ax



Formalism

Covariance matrix of the pseudo-power spectrum
Fiducial power spectrum from model

Can include beam, transfer function, noise,
pseudo-power spectrum pixel window function.

(on the masked sky) //

2~ — 214
Cov(Cy, Cp) = j:‘ff’[Wz] ZC:”I: O LW C}Z
/ KIKZ

Pure geometric coupling - MASTER matrix

ESTASRMANA GOSN

Well known [Hivon et al. 2002]

Scales as @(fﬁl ) (or even @(fﬁl ) using [Louis et al. 2020])

ax ax



Formalism

Covariance matrix of the pseudo-power spectrum
Fiducial power spectrum from model

Can include beam, transfer function, noise,
pseudo-power spectrum piXQl window function.

(On the masked SkY) //

/ 16, Scalesas O(Z° )Yand 7., ~ 4000

Pure geometric coupling - MASTER matrix

Covariance coupling kernel

Always approximated in the literature

Well known [Hivon et al. 2002] UNTIL NOW!

Scales as @(fé ) (or even @(fﬁl ) using [Louis et al. 2020])

ax ax



E.xact covariance

* I implemented for the first time an exact computation, with a x1000 speedup

* This code allows to compute any row of covariance at any multipole
For a given ¢, X,,N¢' ~ O(%
= 3, V(€. C) ~ O},
instead of O(£°, )

10



E.xact covariance

Rows for ¢ = 1000 Rows for ¢ = 1800

10_10_; 10—12—§
DR 10-13—;
* How does this code E§ : ........................ A
compare to simulations ? 07 \ Ve 0
/\/V 107" 5
10—13-;
» Itis still expensive: 3o0h .
CPU time for a row at A BN v
Z = 1000 ol Var 1071 -

_92;I./;é0 9;5 lOIOO 10I25 10I5O | 10I75 | 1725 1790 1775 1800 1825 1850 1875

— Exact Covafialie Monte.Carlo covariance [ iﬁﬁﬁiiddﬁ?ﬁff&f o
|

Monte Carlo noise
N.... = 10 000
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Approximations

* To use less computing ressources, we will use approximations of the
covariance matrix. They are expected to be precise on large sky fraction, but
their accuracy need to be evaluated for small area (SPT3G~4%)

.02 200 ~ 0(77) < O

max)

12



Approximations

* To use less computing ressources, we will use approximations of the
covariance matrix. They are expected to be precise on large sky fraction, but
their accuracy need to be evaluated for small area (SPT3G~4%)

> > N king !
Zbﬂf, A Z?;,P ~ @(‘)‘)) < @(f;ax) o source masking

12 CMB temperature anisotropies



Approximations

It is not realistic to run the exact computation for our analysis => we use
approximations that work for every multipole !

» [Efstathiou 2004]+[Challinor&Chon 2004] NKA - Planck and others => @(fglax)

* [Friedrich et al. 2021] FRI => @(fé’l ) - DESY3

ax

* [Nicola et al. 2021] INKA => @(fglax)

* [EC et al.2022] ACC - obtained with our knowledge from the exact
computation

Scales as O(d,,,,n4.) > O(Z5).,,) (~100h of CPU-time vs few minutes) but it has

to be computed only once per mask

13



Approximations cov(C,,C,) = 28,,[W? Z

‘f
‘f
-

A

" QLY W] CR

Comparing the covariance coupling kernels 018 xS
ApprOleatlon8: £=¢'=200  _.-"7 4 200, ' 19Q “‘ = 200, ' = 150
o - & »
* NKA (Planck) (o) w] o
0o
«S' 200 S O 195 - 175
o
195 - s 150 A O
190
210 -
Diagonal .o | 10th Diagonal soth Diagonal
205 - 2001 W ’
Exact < m0- . - !' -
195 - g5 150 f H
190 i I I I I I I I I I I I
190 195 200 205 210 185 195 205 150 175 200
£ £ £
0.000 O.(;OS 0.010 0.015 0.(;00 O.(;OS 0.(;10 0.015 0.020 0.(;00 O.(;OS 0.010
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Approximations cov(C,,C,) = 28,,[W? Z

Comparing the covariance coupling kernels L .2—"'
Approximations: £=¢'=200 .- £=200,¢ =190 * £=200,¢ =150

210 - - é »
* NKA (Planck) (o) s - | e :

® +
° FRI (_l_) <S' 200 & 195 A 175 4
+ ®
195 150 + @
185 -
190
210 -
Diagonal s | 10th Diagonal soth Diagonal

205 200 k" '
EXaCt &' 200 - . 195 - !. 175

195 - 150 - F b

185 -
190 i I I I I I I I I I I I
190 195 200 205 210 185 195 205 150 175 200
£ £ £
0.000 O.(;OS 0.010 0.015 O.(;OO O.(;OS 0.(;10 0.015 0.020 0.(;00 O.(;OS 0.010
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Approximations cov(C,,¢,) = 22,,] WZ]Z " )W

Ce’
Comparing the covariance coupling kernels L .2—"'
ApprOleatlon8: £=¢'=200  _.-"7 f? = 200, ' = 19Q “‘ = 200, ' = 150
210 - - é »
* NKA (Planck) (o) w{ ,
® +
° FRI (_l_) ' 200 - 195 - 175 -
+ ®
. 195 - s 150 ~ + ®
+ INKA (image)
190 -
210
Diagonal .o | 10th Diagonal soth Diagonal
205 200 1 L e
Exact ol . - l -
195 - . 150 - F ,
190 : : : : : : : : : : :
190 195 200 205 210 185 195 205 150 175 200
51 51 51
0.000 0.(;05 0.010 0.015 0.(;05 O.(;10 0.015 0.020 O.OIOO O.(;OS 0.010
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Approximations Cov(C,,C,) = 28,,{W? Y ¥

£’
Comparing the covariance coupling kernels __1,—2"" i
ApprOXimationso £=¢'=200  _.-"7 {? 200, ' 19d “‘ = 200, —
. 210 - - é »
* ACC (this work) w0l /
Using the same ® for identical T ' :!: '
. . 195 g5 150 ’ ‘i
multipole separation |£ — £”|
o Diagonal .o | 10th Diagonal soth Diagonal
205 - 2001 W 4
EXaCt &' 200 . 195 !- 175
195 7 s 150 - 4 b
190 195 22)10 205 210 185 1{?15 205 150 1;15 200
O(;OS 0.010 0.015 O(;OO 0(;05 O(;IO 0.015 0.020 OOIOO O(;OS

17

@flfz[W] o




Relative difference of covariance rows

Resul
CSults ~ Temperature
. _ 0.1 -
Accuracy of approximations g
- zpi\])
E 8_"‘\\ OO —{ ------------ E EE E EEEEEEEEEESEEEEEEEEEEEEEEEEEEEEEER
. . - z§$
* We look at the relative difference of <
. S —0.1 -
rows of the covariance centered on 2
the diagonal 0.2 -
= o Polarization
| ]
* Inred ACC 0 03
5, 00100020000 -P-P-0-00-0-0+0
@)
< 0.1 -
)
_02 I I I I I I I
=75 =50 =25 0 25 50 75
£ —¢
ACC INKA

e NKA FRI



Results

Binned covariances

* Looking at binned
covariance

(AZ = 50)

* Literature
approximations
work with
precision up to
5%.

* ACC is more
precise, percent
level

Diagonal
EP I3, — 1

First off-diagonal

3

2ppe1 — 1

~/

APP
&b+1/

x1072

Relative difference of binned approximations vs exact computation

TTTT

EEEE

9 - -
_4 - -
%1072
| | | | | | | | A |
4 - i //\ /\
A al I\
2 | . ‘\ _ . \\ ;/ \
LN —d S £
; : 3 z \. - : \ / \
. A\t ’ - e ) -7 \
. ~.r —— | | / <
92 4 - . N \-_‘/‘/. AN
4 - -
| | | | | | | | | | | |
225 375 525 675 825 975 225 375 525 675 825 975
b b
19
= ACC (this work) NKA -—- INKA FRI



Caveat

Approximations are known to fail when we mask the sources!

Cartesian view of apodized mask with holes

T
L

..... f. '

AR
..... 00
.f..u...\ ~._m..
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Caveat

Approximations are known to fail when we mask the sources!

Mask with holes: simulations vs INKA approx ; diagonals

107 5

Diagonal of covariance

/

P 4

A
5
\

wrong
estimation of
the variance by
50%

——— (Obtained with simulations
Obtained with INKA approximation

500 1000

1500
14

2000

2500

3000 21

Mask with holes: simulationss vs INKA approx ; rank of correlation

Rank (2500) of correlation matrix

109 -

—_
5
—_

10—2

10~4

wrong estimation of
the coupling/by 2
- prders of magnitude

1 = Obtained with simulations

Obtained with INKA approximation

2400

2425 2450 2475 2500 2025
14

2550

2575
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Outline

A. Overview of SPT 2019/2020
B. Improving the likelihood pipeline

1. Accurate covariance matrices
[EC, Galli, Benabed, Hivon, Lilley 2022]

2. How to treat point sources
i. Inpainting (Gaussian constrained realization)

ii. Analytical expansion of the point source contribution [Gratton, Challinor, ...,
Camphuis in prep]

3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]
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Diagonal of covariance matrices (correctly normalized) in the case with(out)

(2.1.) Inpainting ol

103 3
Why ? E —— With holes in the mask
. Without holes in the mask
10?2 3
* Bright clusters or sources need to 101 |
be masked g
S 100 -
* This will create spurious -
: 2 10 5
correlations between the modes E More
- - . .
1072 3 variance in
. . f the case
* What if we did not mask them ? 10-3 - .
5 with holes
104 I

0 500 1000 1500 2000 2500 3000
14
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Holes in the map

(2.1.) Inpainting

ldea

* One can fill the signal inside the
holes with a gaussian constrained
realization of the CMB
anisotropies. L B ced

» Challenges: very high resolution
= 8192) with many
~ 2000) of varying

mMaps (nside
sources (/V,

radii.

ources
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Outline

A. Overview of SPT 2019/2020
B. Improving the likelihood pipeline

1. Accurate covariance matrices
[EC, Galli, Benabed, Hivon, Lilley 2022]

2. How to treat point sources
i. Inpainting (Gaussian constrained realization)

ii. Amnalytical expansion of the point source contribution [Gratton, Challinor, ...,
Camphuis in prep]

3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]
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Ratio of covariance diagonals

(2.ii.) Analytical CMB covariance with o
SOUrces 1.10}
[Gratton, Challinor, Migliaccio, Hivon, Lilley, Camphuis] .
i*:gg 1.05
* Idea: separate mask contributions in S0
diffuse + sources S
0.95} |
* Use expansion of the covariance into R
cumulants 0.90 45460650 B0G elo'oo 1200 1400 16'o§> 1800
: oL
Here an example for Planck My contribution :
1.25
E - COV?ﬁumeric
1.20 A E COV?lxaCt
v
1.15
% 1.10 /J \‘\
S / ATy
S 1.05 A Mv/\‘,\/ A o A AN
O v Vv v
100 .....................................................................................
0.95 -
26
0.90

200 400 600 800 1000



Quick summary

* We have been working on improving the likelihood pipeline by building an accurate
covariance matrix. We are now able to compute exactly the covariance matrix.

* We also have determined the accuracy of existing/new approximations on small
survey area.

* We have solutions to deal with the point source masking problem

27



Outline

A. Overview of SPT 2019/2020
B. Improving the likelihood pipeline

1. Accurate covariance matrices
[EC, Galli, Benabed, Hivon, Lilley 2022]

2. How to treat point sources
i. Inpainting (Gaussian constrained realization)

ii. Analytical expansion of the point source contribution [Gratton, Challinor, ...,
Camphuis in prep]

3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]
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Fractional overdensity field; z = 127.0

1000 ~ 5. Y R
CarPool?
o s 500 G T a ®, e, SSesaisl | 11.02

g 60017V aoe S g TG "I |

= A b W et [l 1.01

[Chartier, Wandelt et al., 2021] = aoot S¥e R R Tos gl o
200 o L B3V s LR & t 10.99

0.98

0 200 400 600 800 1000

* An example with matter power

spectrum | Ny " -
P  L-PICOLA | ‘k  GADGET-III |

Very precise power spectrum with 100 times less simulations! l l
Fractional overder ity fields; z = 0.5
L-PICOLA snapshot GADGET snapshot
2 x 101 —+—500 GADGET K000 1000 |
p— —+- 5 GADGET w/ CARPool 101! | 800 101
= |
@) ¥ 600
Q NS r".z ‘
S e & 400
0 ; :
._|| 20x95% confidence intervals C / 109 { 001 100
C AT I & ; Ty
: 10 ‘ 0 200 400 600 800 1000 0 200 400 600 800 1000
! / 9.4 x 10° R = h~*Mpc h~*Mpc
AN : 9.2 x 10°+ | |
a ('5] 9x 10° } i l Analysis code ‘
X 8.8 x 10° - :: Nig ‘”l ,‘ |
8.6 x 10° g SES e e - .
6 % 100 8.4 % 100 I I e F [Chartier et al. 2021] ‘



CarPool?

Accelerated simulations using correlations
between estimators

* [Chartier, Wandelt et al., 2021] C' = (C — ﬁ( F — < F))
* Two ingredients:
var[C'] = var[C] — 2fcov[C, F] + p*var[F]
* surrogates [ : a fast or well-known T

estimator. : cov|F, C] |

if f = then|

* simulations C: a slow or poorly-known var(F')

estimator. We want to estimate its mean or
its covariance using variance reduction

method.

They need to be correlated (start from same random

30



Covariance with holes in the mask
Method

Motivation: analytical approximations of the covariance matrix fail when
including sources in the computation. A solution could be to use simulations to

obtain the covariance. But what if you update your point source mask ?

W36OO
. — Cy
Pipeline: (7, O, U) _
> Fz/ﬂ

Surrogate: I, because we have already computed the covariance

Simulations: C, because we want to estimate the covariance (with a few
simulations only!)
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Covariance with holes in the mask
Method

Motivation: analytical approximations of the covariance matrix fail when
including sources in the computation. A solution could be to use simulations to
obtain the covariance. But what if you update your point source mask ?

| 'Obtained on a mask with 3100 holes

Surrogate: I, because we have already computed the covariance

Simulations: C, because we want to estimate the covariance (with a few
simulations only!)
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Covariance with holes in the mask
Method

Motivation: analytical approximations of the covariance matrix fail when
including sources in the computation. A solution could be to use simulations to
obtain the covariance. But what if you update your point source mask ?

| ‘Obtained on a mask with 3600 holes
| 'Obtained on a mask with 3100 holes

Surrogate: I, because we have already computed the covariance

Simulations: C, because we want to estimate the covariance (with a few
simulations only!)
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Covariance with holes in the mask

1.00

Correlation
0.99

* Very good correlation between 0.98

simulation/surrogate!
0.97

F

> 0.96

Je,

0.95

0.94

0.93

0.92

0 235 50 75 100 125 150 175



Covariance with holes in the mask

Results

Fisher plots with 3
covariances:

* ML: using 10 000
simulations, considered as
« truth »

* ML 600: same but with only
600 simulations

* CarPool Bayes: using
Carpool, and only 15+5
simulations (training +
testing)

Nspec
q

3
.j 0

In(10'°As)
‘)?0

"CARPool Bayes. n, = 15+ 5 |

ML (Truth), n. = 10000
ML, only). n. = 600 __

%

.‘Q\?

I

0

P
In(10'°As)



Carpool for mock-observations ?

Applying this technique to our mock-observations pipeline

* Motivation: we want to use mock-
observations to compute the transfer
functions or to validate our analytical

: : mock—obs
computation. C;h -(T,0,U) —— (T, 0, U)°
» Surrogate: F, = é?p“t because we know ' '
. . ~input ~output
precisely the covariance (only CMB ) C p C ,

» Simulations: C, = C;“tp“t because we

want to estimate the covariance
(which includes filtering)
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Carpool for mock-observations ?

Applying this technique to our mock-observations pipeline

Pearson correlation coefficient of input vs output

* Very high =
correlations Q
between features |
of input vs S
features of output. = bi)

il @
S

+ This could help us !
to do §
« effectively » 10 or &
100 times more 1
simulations Q |

0 1000 2000 3000 4000

: /



e I'-3G will allow us to do great science. S o e
by buildingan
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Masked CMB maps
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General method

Power spectrum based gaussian likelihood
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General method

Power spectrum based gaussian likelihood

Masked CMB maps
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Masked CMB maps

General method

Power spectrum based gaussian likelihood

Gaussian likelihood :

::> é' —In Z(C| ACDM)
¢ >

38
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General method

Power spectrum based gaussian likelihood

Parameters

Masl(eq EMB maps Qc

Gaussian likelihood : Q b
¢> é, I::>_ In Z(C| ACDM) ¢> A o2t

S
r x —(C — > L
2 HM C
We explore the likelihood, in /\c\\

order to measure the M/

parameters and obtain their
posterior distributions Cth

38



SPT-53G 2018

39
Auto/cross-frequencies spectra [Dutcher et al. 2021]

Power spectra

40 - "8 Wy
L gy \ !ﬁﬁq
LYY AR VALV N
= R . i b ) q.llﬂ |
" . TR e { | |
2y b | l v 1 Rl-

_20-

100 - i
— ] i

50
X ' f
= 0+ A X . ur, T A o WP
Ly . " W W hﬂ" e ! : 1
o 0 K J ¥ .

W i “i'ﬁ i
—100 -
X
~150 ; . . . . .
0 500 1000 1500 2000 2500 3000
Multipole /
95x95 95x150 | 95x220 |  150x150 | 150x220 220x220



- SPT-3G
— SPT-3G extended
BICEP3

SPT-3G - Summer fields

Prospects - work by Federica Guidi

———

* In addition to the winter fields:
3000 deg2 = 1500 (3.1%) + 600 (1.4%) + 900 (2.1%)

* Observing ~4 months per year

* Noise levels for summer 19/20 + 20/2t:
~ 11, 10, 38 uK-arcmin (T)
~10, 14, §4 uK-arcmin (pol)

* Map depth of 2 years of summer observations is
* ~1.4 times better than the 2018 winter field maps
* ~2.5 times worse than the 2019+2010 winter fields

* 3 times larger sky fraction than winter
— reduce sample variance

40

Slide by F. Guidi



PolSpice

For this analysis we will use PolSpice

estimator C » [Szapudi et al. 2001]
[Chon et al. 2004]

ATT _ <TT
Cp = Z 0GzeCp
f/

and little more sophisticated for
polarization, with kernels . G, _G, , G

Accuracy of approximations extend to
that case

41

PolSpice convoluting kernels
Rows for ¢ = 2000

|

fF 3\
'-I. \
"y

|G ¢ 2000

I I I
1925 1950 1975 2000 2025 2050 2075
L

w0 Gepr +Gep m— _Gyp

In thick lines are positive values, narrow lines are negative values
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E.xact covariance EALPixmao2aln
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HEALPix.alm2map
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HEALPix.map2alm
~ me’ | |2
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., Fig.1: Diagram showing how to compute one rank of the covari-
ance using HEALP1x tools. Square boxes (resp. diamond boxes,



ACC

New approximation

Cov(Cy. Cp) = 28,,[W?] ) CR O’

coupling)
* Scalesin O(d_,..n

* d

m
to compute

* Ngige

4
side

)

010

h (:)flfz

ACC (approximated covariance

(W] C!
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: map resolution used to compute ®
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Results

Higher multipoles ?

* We look at the relative difference of
rows of the covariance centered on

the diagonal

* | add to the previous plot the result
for larger rows but among a sparse

number of them
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Caveat

S C’Eh
Why ? O% 103 - Without holes in the mask
§§ : Offset due to - With holes in the mask
| i
107 ; holes

* The holes in the mask gives ®
an offset

* This will be convoluted with

litude of covariance coupling kernels O:;

the CMB power spectrum
Cov(Cy. Cp) = 22, W1 Y, € 011w O . —
Az el
A
2107

* (In the plot, ®s have been

renormalized) 300 1000
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Inpainting

Final bias on the spectrum

C,—-»T,0,U i > é?are

| Nt A
T, Q, [/ npain lng) [T, Q, U]ﬁlled 14 § Cgﬂed

éﬁlled
Here we plot < A”ﬂ ) 1
<Ct%are>
G(Cl}are)

\/Nsim — 100

Error bars are

Correction for the covariance ? only f, ?
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filled cl/bare cl - 1

filled cl/bare cl - 1

Comparing spectrum of unfilled maps
vs spectrum of filled maps
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{ This can be reduced by

-3 - i expanding the

. constraining zone
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