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Outline

A. Overview of SPT-3G 2019/2020


B. Improving the likelihood pipeline


1. Accurate covariance matrices  
[EC, Galli, Benabed, Hivon, Lilley 2022]


2. How to treat point sources


i. Inpainting (Gaussian constrained realization)


ii. Analytical expansion of the point source contribution [Gratton, Challinor, …, 
Camphuis in prep]


3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]
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South Pole Telescope
Ground-based experiment

• 10-meter diameter telescope observing the CMB 
anisotropies in T and P


• State of the art detector SPT-3G, observing during 5 
years (2019-2023) in the winter - sky patch: 4% of the 
sky


• 3 frequencies 90, 150, 220 GHz


• FWHM : 1.7, 1.4, 1.2 arcmin  
	 (at 95, 150, 220 GHz) vs Planck 5 arcmin


• Final map depth: 


• 2.8, 2.6, 6.6 µK-arcmin (T) vs Planck 40 
-arcmin 

μK Sky patch overlaid over thermal dust emission [Dutcher et al. 2021]

SPT-3G « winter field » (4% vs Planck fullsky)
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SPT-3G 2019/2020
Next data release

• Analysis of 2019+2020 winter maps


• factor ~ 4 lower noise than in SPT-3G 2018 


• Map depth: 


• ~ 5/4/15 µK-arcmin (T) 


• ~ 7/6/21 µK-arcmin (pol)


• Observations will continue through at least 
2023 (total of 5 years)


• Goal noise: 2.8, 2.6, 6.6 µK-arcmin (T) 


• ΛCDM constraints comparable with 
Planck from SPT-3G alone !

Contour plot and posterior distribution of parameters for SPT-3G 2018 data

 [Dutcher et al. 2021]
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Challenges for the future

• Data gets better ! So we need to improve the pipeline, as we want to trust our 
cosmological parameters.


• As is stands, the current pipeline requires a lot of computing ressources to run 
mock-observations: simulations that mimic telescope observation of a CMB + 
foregrounds sky. We would like to find alternatives to these very expensive 
mock-observations.
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• Accurate CMB covariance matrices 
are required for a unbiased 
estimation of the cosmological 
parameters and their error bars. 
[Sellentin&Starck 2019]


• The relative accuracy on the 
cosmological parameters is that of 
the inverse of the covariance matrix 
[Taylor, Joachimi, Kitching 2012]


•

−ln ℒ(Ĉ |ΛCDM)

∝
1
2

(Ĉ − Cth)TΣ−1(Ĉ − Cth))

Power spectrum gaussian likelihood :

Accurate covariance matrices
Core component of the likelihood
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Accurate covariance matrices
Core component of the likelihood

• Previous data release: mock-observations 
+ estimate of noise through data, which 
requires computing resources and 
regularization [Balkenhol et al. 2021]


• Next data release: we would like to have a 
(semi-)analytical computation, 
precision and no need for regularization 
[EC et al. 2022] https://arxiv.org/abs/
2204.13721. Curved-sky analysis


• Ingredients: mask (introduces coupling) 
 and fiducial spectrum W Cth

ℓ 200 400 600 800 1000
200

400

600

800

1000
� full sky

200 400 600 800 1000

� with mask

10�4 10�3 10�2 10�1 100

Unbinned correlation matrices full sky vs masked sky

−ln ℒ(Ĉ |ΛCDM)

∝
1
2

(Ĉ − Cth)TΣ−1(Ĉ − Cth))

Power spectrum gaussian likelihood :

zero correlations
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Formalism
Covariance matrix of the pseudo-power spectrum

Cov(C̃ℓ, C̃ℓ′￼
) = 2Ξℓℓ′￼

[W2]∑
ℓ1ℓ2

Cth
ℓ1

Θ̄ℓ1ℓ2
ℓℓ′￼

[W] Cth
ℓ2

pseudo-power spectrum

(on the masked sky)
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Formalism
Covariance matrix of the pseudo-power spectrum

Pure geometric coupling - MASTER matrix


Well known [Hivon et al. 2002]


Scales as  (or even  using [Louis et al. 2020])𝒪(ℓ3
max) 𝒪(ℓ2
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Formalism
Covariance matrix of the pseudo-power spectrum

Pure geometric coupling - MASTER matrix


Well known [Hivon et al. 2002]


Scales as  (or even  using [Louis et al. 2020])𝒪(ℓ3
max) 𝒪(ℓ2

max)

Fiducial power spectrum from model


Can include beam, transfer function, noise, 
pixel window function.

Covariance coupling kernel


Scales as  and  


Always approximated in the literature


UNTIL NOW!

𝒪(ℓ6
max) ℓmax ∼ 4000

Cov(C̃ℓ, C̃ℓ′￼
) = 2Ξℓℓ′￼
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Cth
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[W] Cth
ℓ2

pseudo-power spectrum

(on the masked sky)
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Exact covariance

• I implemented for the first time an exact computation, with a x1000 speedup


• This code allows to compute any row of covariance at any multipole 


 

For a given ℓ, Σ̃ℓℓ′￼
∀ℓ′￼ ∼ 𝒪(ℓ4)

⟹ Σ̃ℓℓ′￼
∀(ℓ, ℓ′￼) ∼ 𝒪(ℓ5

max)
instead of 𝒪(ℓ6

max)
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Exact covariance

• How does this code 
compare to simulations ? 


• It is still expensive: 300h 
CPU time for a row at 
ℓ = 1000

Monte Carlo noise

Nsim = 10 000
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Approximations

• To use less computing ressources, we will use approximations of the 
covariance matrix. They are expected to be precise on large sky fraction, but 
their accuracy need to be evaluated for small area (SPT3G~4%)


 
Σ̃ℓℓ′￼
≈ Σ̃APP

ℓℓ′￼
∼ 𝒪(??) < 𝒪(ℓ5

max)
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Approximations

• To use less computing ressources, we will use approximations of the 
covariance matrix. They are expected to be precise on large sky fraction, but 
their accuracy need to be evaluated for small area (SPT3G~4%)


 
Σ̃ℓℓ′￼
≈ Σ̃APP

ℓℓ′￼
∼ 𝒪(??) < 𝒪(ℓ5

max)
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Approximations

• [Efstathiou 2004]+[Challinor&Chon 2004] NKA - Planck and others => 


• [Friedrich et al. 2021] FRI =>  - DESY3


• [Nicola et al. 2021] INKA => 


• [EC et al. 2022] ACC - obtained with our knowledge from the exact 
computation 


Scales as  (~100h of CPU-time vs few minutes) but it has 
to be computed only once per mask


𝒪(ℓ3
max)

𝒪(ℓ3
max)

𝒪(ℓ3
max)

𝒪(dmaxn4
side) ≫ 𝒪(ℓ3

max)

It is not realistic to run the exact computation for our analysis => we use 
approximations that work for every multipole !
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Approximations
Comparing the covariance coupling kernels

Approximations:


• NKA (Planck) (o)


Exact
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Approximations

Approximations:


• ACC (this work)


Using the same  for identical 
multipole separation 
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Results
Accuracy of approximations

• We look at the relative difference of 
rows of the covariance centered on 
the diagonal


• In red ACC
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Results
Binned covariances

• Looking at binned 
covariance 
( )


• Literature 
approximations 
work with 
precision up to 
5%. 


• ACC is more 
precise, percent 
level
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Caveat
Approximations are known to fail when we mask the sources!

Cartesian view of apodized mask with holes 
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Caveat
Approximations are known to fail when we mask the sources!

wrong 
estimation of 
the variance by 
50%

wrong estimation of 
the coupling by 2 
orders of magnitude
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Outline

A. Overview of SPT 2019/2020


B. Improving the likelihood pipeline


1. Accurate covariance matrices  
[EC, Galli, Benabed, Hivon, Lilley 2022]


2. How to treat point sources


i. Inpainting (Gaussian constrained realization)


ii. Analytical expansion of the point source contribution [Gratton, Challinor, …, 
Camphuis in prep]


3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]
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Diagonal of covariance matrices (correctly normalized) in the case with(out) 
holes(2.i.) Inpainting

Why ? 

• Bright clusters or sources need to 
be masked


• This will create spurious 
correlations between the modes


• What if we did not mask them ? 

More 
variance in 
the case 
with holes
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(2.i.) Inpainting
Idea

• One can fill the signal inside the 
holes with a gaussian constrained 
realization of the CMB 
anisotropies.


• Challenges: very high resolution 
maps ( ) with many 
sources ( ) of varying 
radii. 

nside = 8192
Nsources ∼ 2000

μK

Inpainted holes

μK

Holes in the map
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B. Improving the likelihood pipeline


1. Accurate covariance matrices  
[EC, Galli, Benabed, Hivon, Lilley 2022]


2. How to treat point sources


i. Inpainting (Gaussian constrained realization)


ii. Analytical expansion of the point source contribution [Gratton, Challinor, …, 
Camphuis in prep]


3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]
25



(2.ii.) Analytical CMB covariance with 
sources

[Gratton, Challinor, Migliaccio, Hivon, Lilley, Camphuis]

• Idea: separate mask contributions in 
diffuse + sources


• Use expansion of the covariance into 
cumulants


• Here an example for Planck 

Ratio of covariance diagonals

Preliminary

My contribution
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Quick summary

• We have been working on improving the likelihood pipeline by building an accurate 
covariance matrix. We are now able to compute exactly the covariance matrix.


• We also have determined the accuracy of existing/new approximations on small 
survey area. 


• We have solutions to deal with the point source masking problem
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CarPool ? 
[Chartier, Wandelt et al., 2021]

• An example with matter power 
spectrum

[Chartier et al. 2021] CF

Very precise power spectrum with 100 times less simulations !

C

C′￼

Fast but biased Slow but unbiased
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CarPool ?
Accelerated simulations using correlations 

between estimators

• [Chartier, Wandelt et al., 2021]


• Two ingredients: 


• surrogates  : a fast or well-known 
estimator.


• simulations  : a slow or poorly-known 
estimator. We want to estimate its mean or 
its covariance using variance reduction 
method. 


They need to be correlated (start from same random 
seed!): 


F

C

ρ = Pearson(C, F) ∼ 0.8 − 1.

C′￼ = C − β(F − ⟨F⟩)
var[C′￼] = var[C] − 2βcov[C, F] + β2var[F]

if β =
cov[F, C]

var(F)
then

var(C′￼)
var(C)

= 1 − ρ
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Covariance with holes in the mask

• Motivation: analytical approximations of the covariance matrix fail when 
including sources in the computation. A solution could be to use simulations to 
obtain the covariance. But what if you update your point source mask ? 


• Pipeline: 


• Surrogate:  because we have already computed the covariance


• Simulations:  because we want to estimate the covariance (with a few 
simulations only!)

(T, Q, U)
W3600

Cℓ
W3100

Fℓ

Fℓ

Cℓ

Method
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Covariance with holes in the mask

• Motivation: analytical approximations of the covariance matrix fail when 
including sources in the computation. A solution could be to use simulations to 
obtain the covariance. But what if you update your point source mask ? 


• Pipeline: 


• Surrogate:  because we have already computed the covariance


• Simulations:  because we want to estimate the covariance (with a few 
simulations only!)

(T, Q, U)
W3600

Cℓ
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Fℓ

Fℓ

Cℓ

Method

Obtained on a mask with 3100 holes

Obtained on a mask with 3600 holes
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ML (Truth), nc = 10000
ML (sims only), nc = 600

CARPool Bayes, nc = 15 + 5
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Results

Fisher plots with 3 
covariances:


• ML: using 10 000 
simulations, considered as 
« truth »


• ML 600: same but with only 
600 simulations


• CarPool Bayes: using 
Carpool, and only 15+5 
simulations (training + 
testing)

Preliminary
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Carpool for mock-observations ?
Applying this technique to our mock-observations pipeline

• Motivation: we want to use mock-
observations to compute the transfer 
functions or to validate our analytical 
computation. 


• Surrogate:  because we know 
precisely the covariance (only CMB !)


• Simulations:  because we 
want to estimate the covariance 
(which includes filtering)

Fℓ ≡ Ĉinput
ℓ

Cℓ ≡ Ĉoutput
ℓ

Cth
ℓ

Ĉinput
ℓ Ĉoutput

ℓ

(T, Q, U)i mock−obs (T, Q, U)o
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Carpool for mock-observations ?

• Very high 
correlations 
between features 
of input vs 
features of output.


• This could help us 
to do 
« effectively » 10 or 
100 times more 
simulations

Applying this technique to our mock-observations pipeline

Pearson correlation coefficient of input vs output

Preliminary
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Credits: Aman Choski

Conclusions

• SPT-3G will allow us to do great science.


• We have been working on improving the likelihood pipeline by building an 
accurate covariance matrix.


• We are currently working on approaches to improve the pipeline, with 
promising results.
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Thank you

Credits: Aman Choski
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−ln ℒ(Ĉ |ΛCDM)

∝
1
2
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Auto/cross-frequencies spectra [Dutcher et al. 2021]

SPT-3G 2018
Power spectra
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SPT-3G - Summer fields
Prospects - work by Federica Guidi

• In addition to the winter fields:  
3000 deg2 = 1500 (3.1%) + 600 (1.4%) + 900 (2.1%) 


• Observing ~4 months per year


• Noise levels for summer 19/20 + 20/21:  
~ 11, 10, 38 μK-arcmin (T) 
~ 16, 14, 54 μK-arcmin (pol)


• Map depth of 2 years of summer observations is


• ~1.4 times better than the 2018 winter field maps


• ~2.5 times worse than the 2019+2010 winter fields


• 3 times larger sky fraction than winter  
→ reduce sample variance 

600d

1500d1500d

900d

Slide by F. Guidi
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PolSpice

• For this analysis we will use  
estimator  [Szapudi et al. 2001]
[Chon et al. 2004]


• 


• and little more sophisticated for 
polarization, with kernels 


• Accuracy of approximations extend to 
that case

𝙿𝚘𝚕𝚂𝚙𝚒𝚌𝚎
Ĉℓ

ĈTT
ℓ = ∑

ℓ′￼

0Gℓℓ′￼
C̃TT

ℓ′￼

+G, −G, ×G
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`
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10�1

100
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`

20
00
|

Rows for `0 = 2000

0G``0 +G``0 �G``0

In thick lines are positive values, narrow lines are negative values

PolSpice convoluting kernels
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Exact covariance
Algorithm
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ACC
New approximation




• ACC (approximated covariance 
coupling)


• Scales in 


•  maximum diagonal that you want 
to compute


•  map resolution used to compute 
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) = 2Ξℓℓ′￼
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Results
Higher multipoles ? 

• We look at the relative difference of 
rows of the covariance centered on 
the diagonal


• I add to the previous plot the result 
for larger rows but among a sparse 
number of them
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Caveat
Why ? 

• The holes in the mask gives  
an offset


• This will be convoluted with 
the CMB power spectrum


• (In the plot, s have been 
renormalized)

Θ̄

Θ̄

Offset due to 
holes

Cov(C̃ℓ, C̃ℓ′￼
) = 2Ξℓℓ′￼
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Inpainting
Final bias on the spectrum

• 


• 


• Here we plot 


• Error bars are 


• Correction for the covariance ? only  ?

Cℓ T, Q, U W Ĉbare
ℓ

T, Q, U
Inpainting [T, Q, U]filled W Ĉfilled

ℓ

⟨Ĉfilled
ℓ ⟩

⟨Ĉbare
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− 1

σ(Ĉbare
ℓ )

Nsim = 100

fsky
This can be reduced by 

expanding the 
constraining zone
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