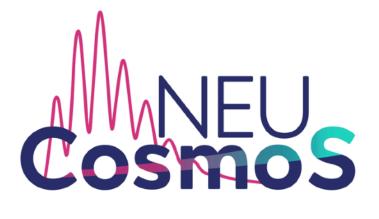


European Research Counci lished by the European Commiss



Etienne Camphuis (IAP) with Silvia Galli, Karim Benabed and Eric Hivon

Colloque national CMB-France #3 - IAP - June 20th, 2022

Building SPT-3G2019/2020 Helfhood

A. Overview of SPT-3G 2019/2020

- Improving the likelihood pipeline B.
 - Accurate covariance matrices [EC, Galli, Benabed, Hivon, Lilley 2022]
 - 2. How to treat point sources
 - Inpainting (Gaussian constrained realization) 1.
 - 11. Camphuis *in prep*]
 - 3. CarPool (Accelerated simulations) [Chartier, Camphuis *in prep*]

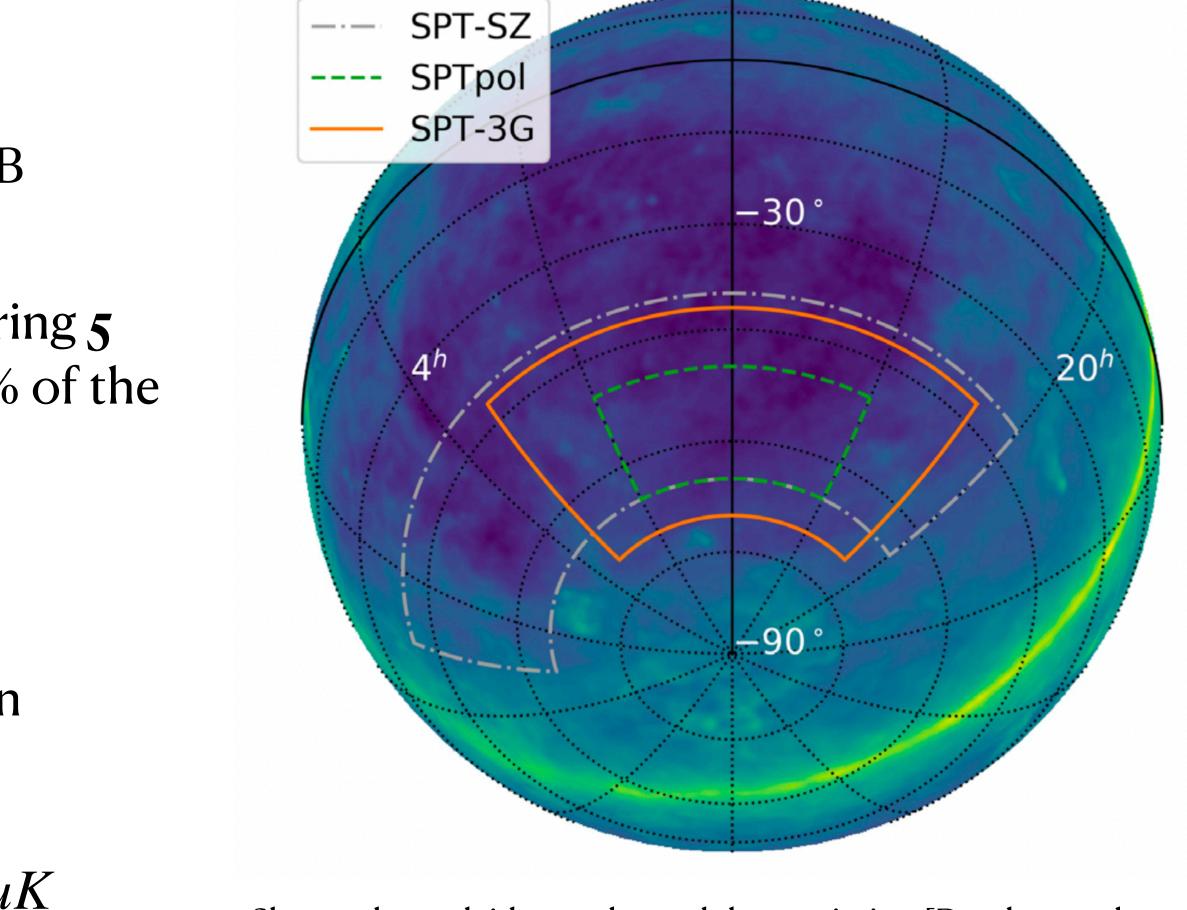
Outline

Analytical expansion of the point source contribution [Gratton, Challinor, ...,

South Pole Telescope Ground-based experiment

- 10-meter diameter telescope observing the CMB anisotropies in T and P
- State of the art detector SPT-3G, observing during **5 years (2019-2023) in the winter -** sky patch: 4% of the sky
- 3 frequencies 90, 150, 220 GHz
- FWHM : 1.7, 1.4, 1.2 arcmin (at 95, 150, 220 GHz) vs *Planck* 5 arcmin
- Final map depth:
 - 2.8, 2.6, 6.6 μK-arcmin (T) vs *Planck* 40 μK
 -arcmin

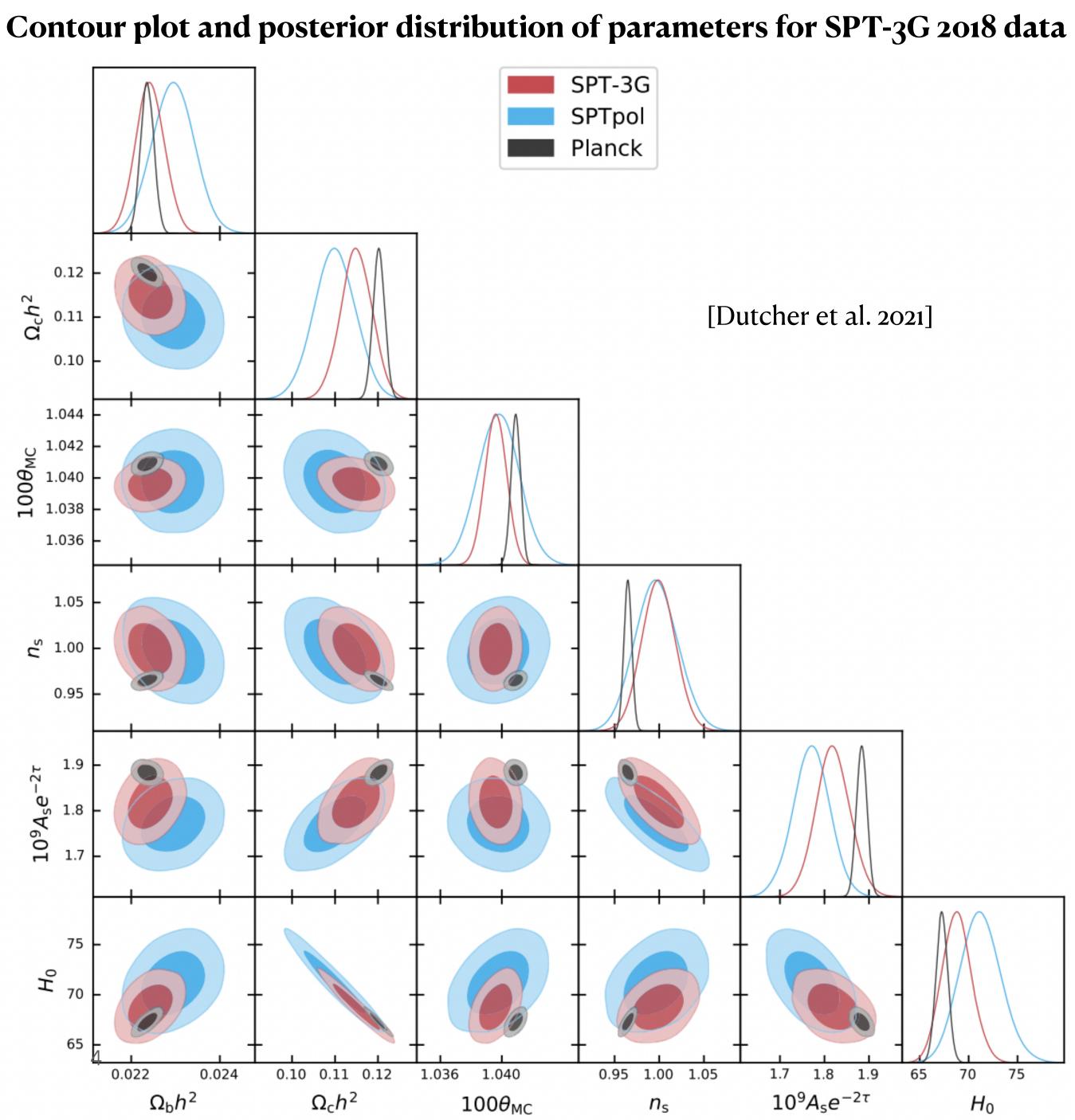
SPT-3G « winter field » (4% vs *Planck* fullsky)



SPT-3G2019/2020

Next data release

- Analysis of 2019+2020 winter maps
 - factor ~ 4 lower noise than in SPT-3G 2018
 - Map depth:
 - ~ $5/4/15 \,\mu$ K-arcmin (T)
 - ~ $7/6/21 \mu$ K-arcmin (pol)
- Observations will continue through at least 2023 (total of 5 years)
 - Goal noise: 2.8, 2.6, 6.6 μ K-arcmin (T)
 - ACDM constraints comparable with Planck from SPT-3G alone !



Challenges for the future

cosmological parameters.

mock-observations.

• Data gets better ! So we need to improve the pipeline, as we want to trust our

• As is stands, the current pipeline requires a lot of computing ressources to run mock-observations: simulations that mimic telescope observation of a CMB + foregrounds sky. We would like to find alternatives to these very expensive

- A. Overview of SPT 2019/2020
- Improving the likelihood pipeline **B**.
 - Accurate covariance matrices [EC, Galli, Benabed, Hivon, Lilley 2022]
 - 2. How to treat point sources
 - Inpainting (Gaussian constrained realization) 1.
 - 11. Camphuis *in prep*]
 - 3. CarPool (Accelerated simulations) [Chartier, Camphuis *in prep*]

Outline

Analytical expansion of the point source contribution [Gratton, Challinor, ...,

Accurate covariance matrices

Core component of the likelihood

- Accurate CMB covariance matrices are required for a unbiased estimation of the cosmological parameters and their error bars.
 [Sellentin&Starck 2019]
- The relative accuracy on the cosmological parameters is that of the inverse of the covariance matrix [Taylor, Joachimi, Kitching 2012]

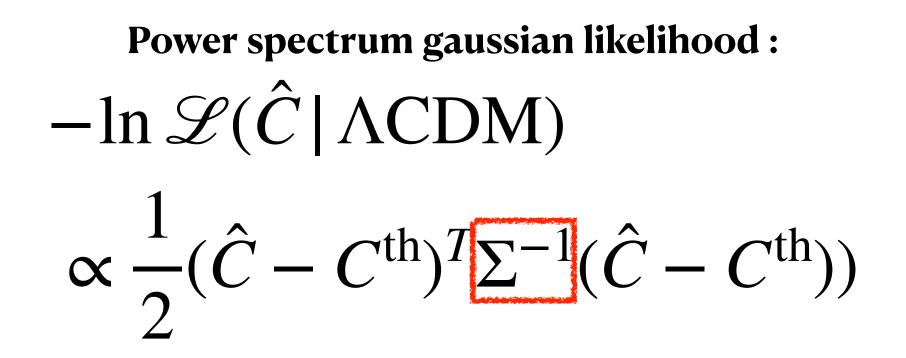
Power spectrum gaussian likelihood : $-\ln \mathscr{L}(\hat{C} \mid \Lambda CDM)$ $\propto \frac{1}{2}(\hat{C} - C^{\text{th}})^T \Sigma^{-1}(\hat{C} - C^{\text{th}}))$

Accurate covariance matrices

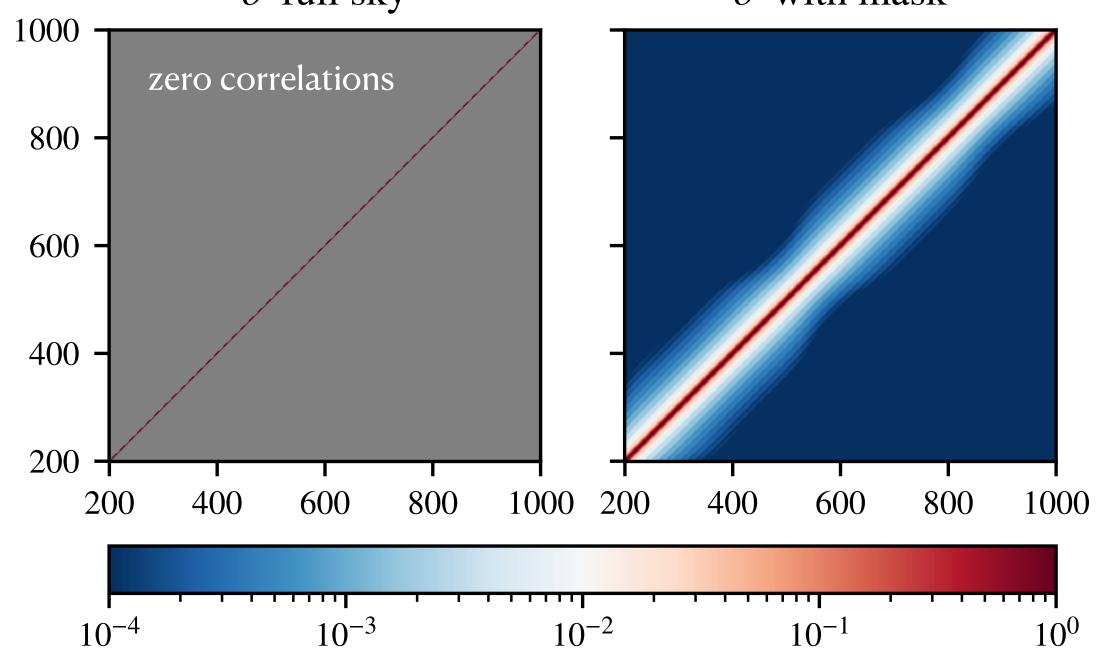
Core component of the likelihood

- Previous data release: mock-observations

 + estimate of noise through data, which
 requires computing resources and
 regularization [Balkenhol et al. 2021]
- Next data release: we would like to have a (semi-)analytical computation, precision and no need for regularization [EC et al. 2022] https://arxiv.org/abs/2204.13721. Curved-sky analysis
- Ingredients: mask (introduces coupling) W and fiducial spectrum C_{ℓ}^{th}



Unbinned correlation matrices full sky vs masked sky σ full sky σ with mask

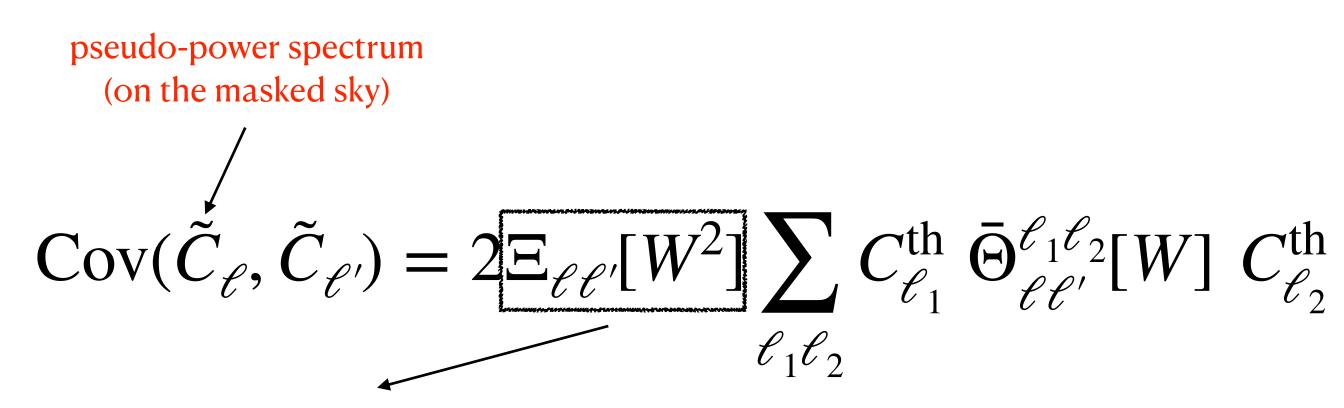


pseudo-power spectrum (on the masked sky)

 $\operatorname{Cov}(\check{C}_{\ell}, \check{C}_{\ell'}) = 2\Xi_{\ell\ell'}[W^2] \sum C_{\ell_1}^{\operatorname{th}} \bar{\Theta}_{\ell\ell'}^{\ell_1\ell_2}[W] C_{\ell_2}^{\operatorname{th}}$ $\ell_1 \ell_2$

Formalism

Covariance matrix of the pseudo-power spectrum



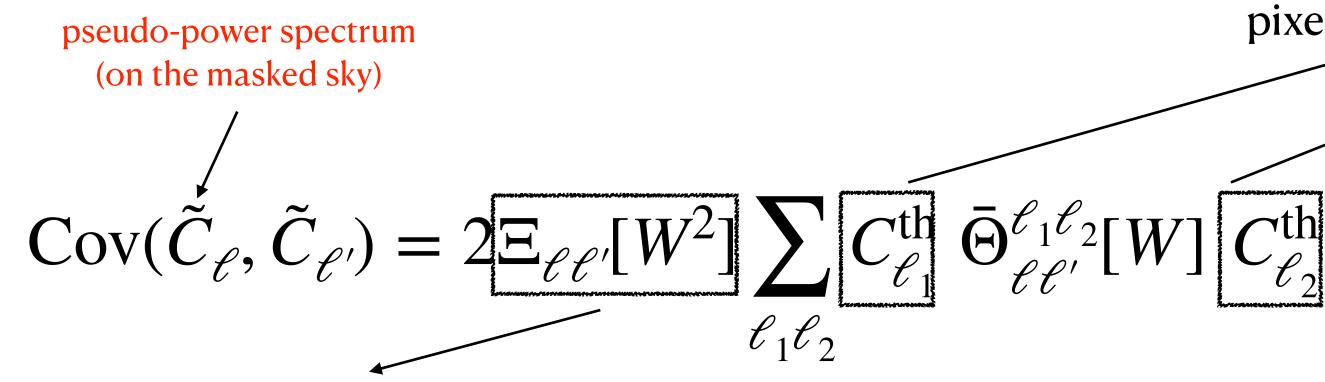
Pure geometric coupling - MASTER matrix

Well known [Hivon et al. 2002]

Scales as $\mathcal{O}(\ell_{\max}^3)$ (or even $\mathcal{O}(\ell_{\max}^2)$ using [Louis et al. 2020])

Formalism

Covariance matrix of the pseudo-power spectrum



Pure geometric coupling - MASTER matrix

Well known [Hivon et al. 2002]

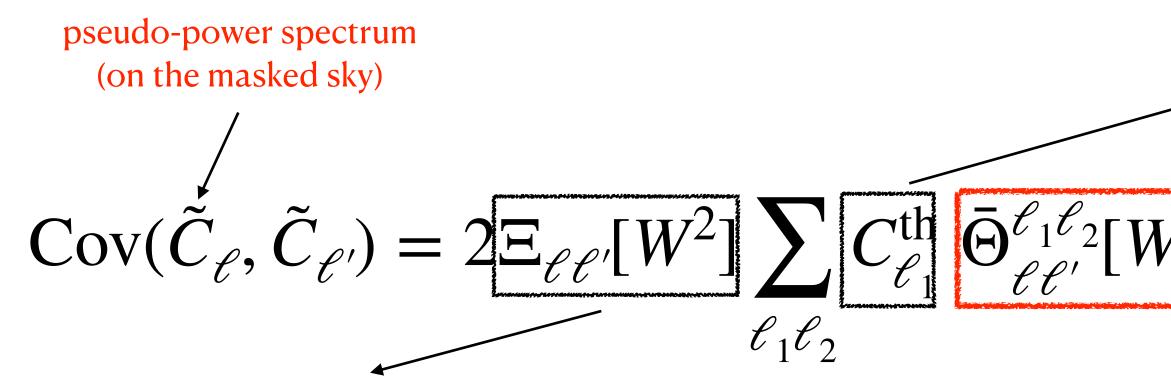
Scales as $\mathcal{O}(\ell_{\max}^3)$ (or even $\mathcal{O}(\ell_{\max}^2)$ using [Louis et al. 2020])

Formalism

Covariance matrix of the pseudo-power spectrum

Fiducial power spectrum from model

Can include beam, transfer function, noise, pixel window function.



Pure geometric coupling - MASTER matrix

Well known [Hivon et al. 2002]

Scales as $\mathcal{O}(\ell_{\max}^3)$ (or even $\mathcal{O}(\ell_{\max}^2)$ using [Louis et al. 2020])

Formalism

Covariance matrix of the pseudo-power spectrum

Fiducial power spectrum from model

Can include beam, transfer function, noise, pixel window function.

Covariance coupling kernel

Scales as $\mathcal{O}(\ell_{\text{max}}^6)$ and $\ell_{\text{max}} \sim 4000$

Always approximated in the literature **UNTIL NOW!**

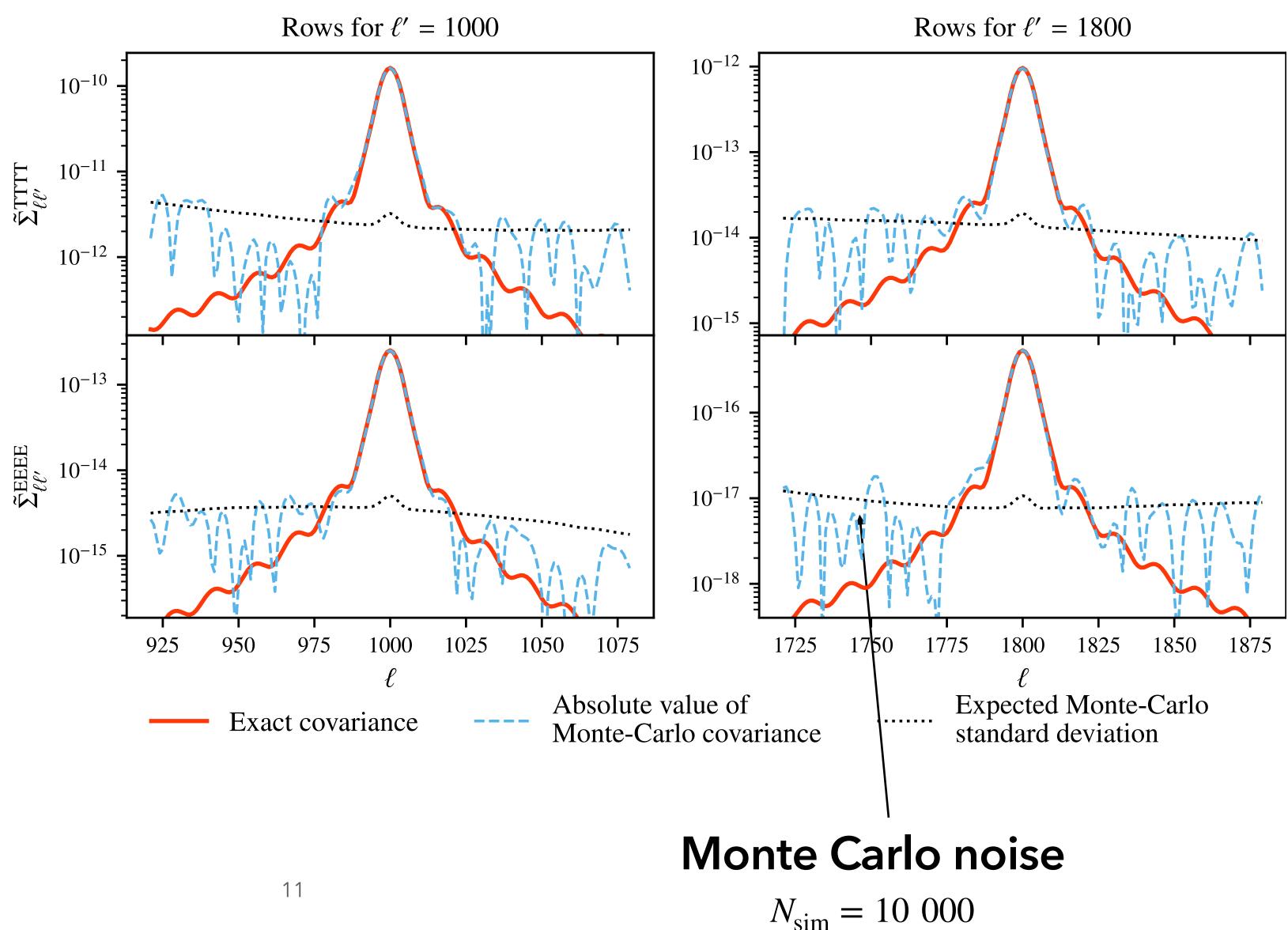
Exact covariance

- I implemented for the first time an exact computation, with a x1000 speedup
 This code allows to compute any row of covariance at any multipole
- This code allows to compute any row of covariance a For a given ℓ , $\tilde{\Sigma}_{\ell\ell'} \forall \ell' \sim O(\ell^4)$
 - instead of $\mathcal{O}(\ell_{\text{max}}^6)$
 - $\implies \tilde{\Sigma}_{\ell\ell'} \forall \ell' \sim \mathcal{O}(\ell')$ $\implies \tilde{\Sigma}_{\ell\ell'} \forall (\ell, \ell') \sim \mathcal{O}(\ell_{\max}^5)$

Exact covariance

• How does this code compare to simulations?

• It is still expensive: 300h CPU time for a row at $\ell = 1000$



Approximations

• To use less computing ressources, we will use approximations of the their accuracy need to be evaluated for small area (SPT₃G~4%)

covariance matrix. They are expected to be precise on large sky fraction, but

 $\tilde{\Sigma}_{\ell\ell'} \approx \tilde{\Sigma}^{APP}_{\ell\ell'} \sim \mathcal{O}(??) < \mathcal{O}(\ell_{\max}^5)$

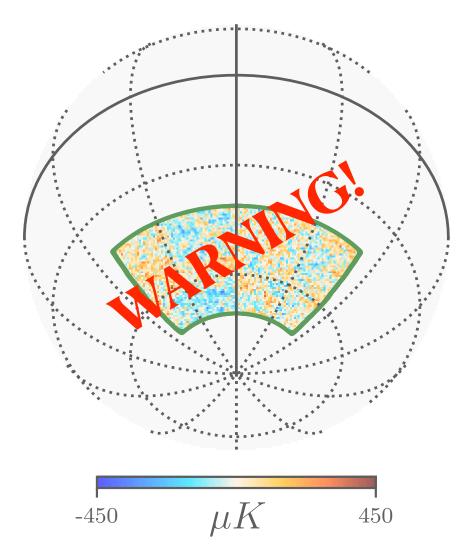
Approximations

• To use less computing ressources, we will use approximations of the their accuracy need to be evaluated for small area ($SPT_3G \sim 4\%$)

covariance matrix. They are expected to be precise on large sky fraction, but

 $\tilde{\Sigma}_{\ell\ell'} \approx \tilde{\Sigma}^{APP}_{\ell\ell'} \sim \mathcal{O}(??) < \mathcal{O}(\ell_{\max}^5)$

No source masking !!



CMB temperature anisotropies

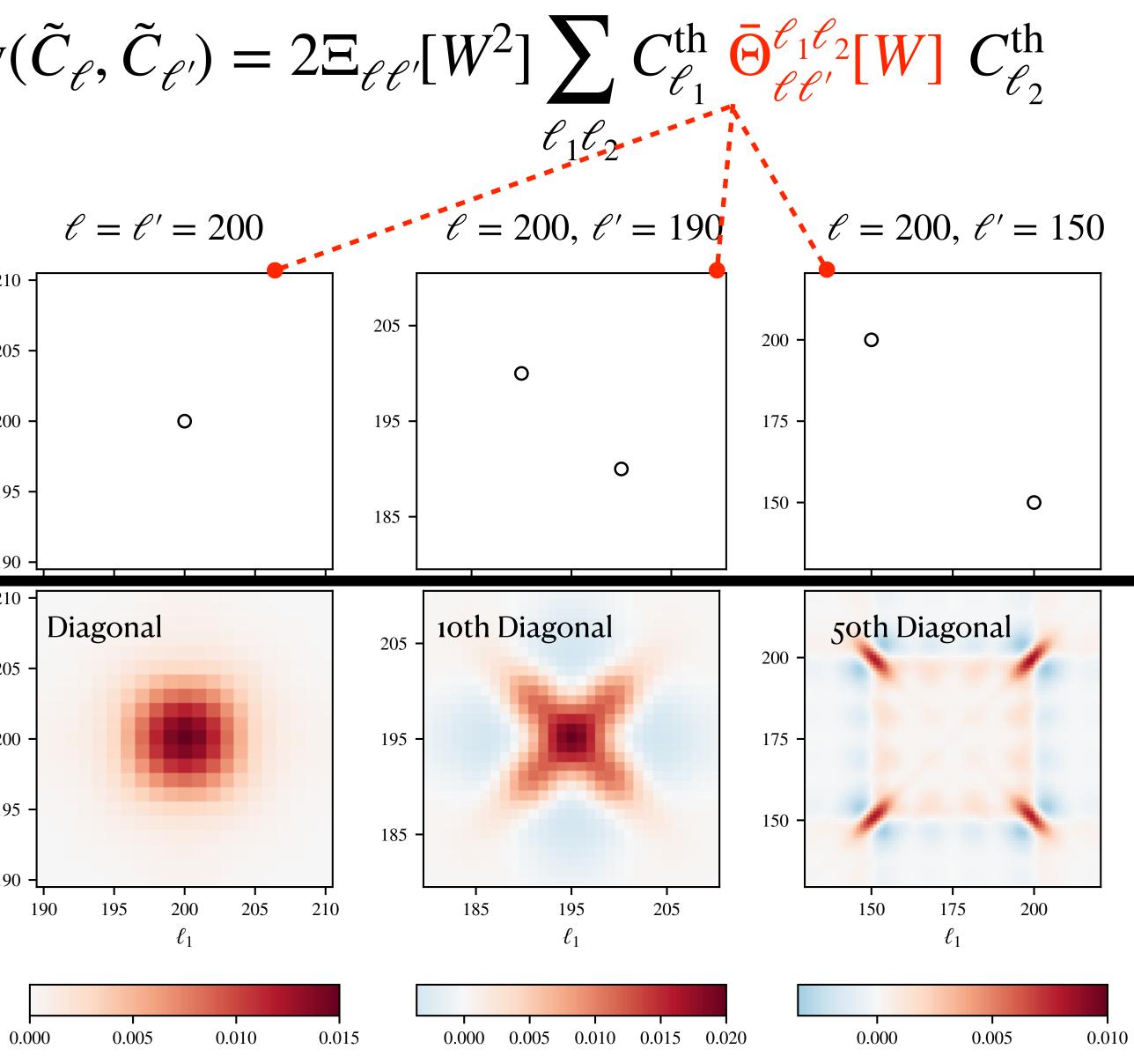
- [Efstathiou 2004]+[Challinor&Chon 2004] NKA *Planck* and others => $O(\ell_{\text{max}}^3)$
- [Friedrich et al. 2021] FRI => $\mathcal{O}(\ell_{\text{max}}^3)$ DESY3
- [Nicola et al. 2021] INKA => $\mathcal{O}(\ell_{\text{max}}^3)$
- [EC et al. 2022] ACC obtained with our knowledge from the exact computation

Scales as $\mathcal{O}(d_{\max}n_{\text{side}}^4) \gg \mathcal{O}(\ell_{\max}^3)$ (~100h of CPU-time vs few minutes) but it has to be computed only once per mask

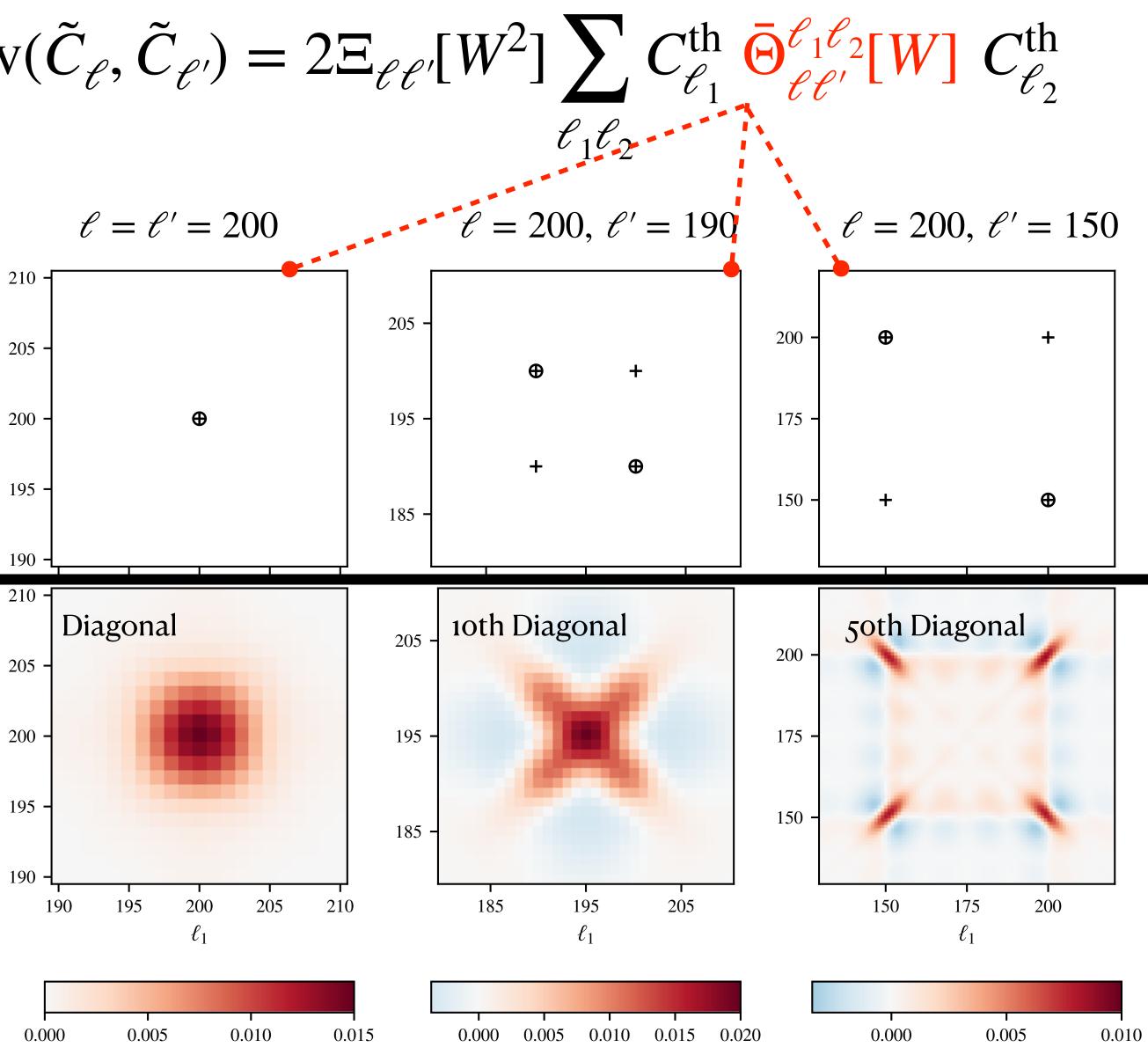
Approximations

It is not realistic to run the exact computation for our analysis => we use approximations that work for every multipole !

Approximations	Cov(
Comparing the covariance coupling ker	nels
Approximations:	210
• NKA (Planck) (o)	210 - 205 -
	S 200 -
	195 -
	190 -
	210 -
	205 -
Exact	S 200 -
	195 -



Approximations	Cov(
Comparing the covariance coupling ker	nels
Approximations:	210
• NKA (Planck) (o)	205
• FRI (+)	S ¹ 200
	195
	190 210
	205
Exact	S 200



Approximations	Cov
----------------	-----

Comparing the covariance coupling kernels

Approximations:

Exact

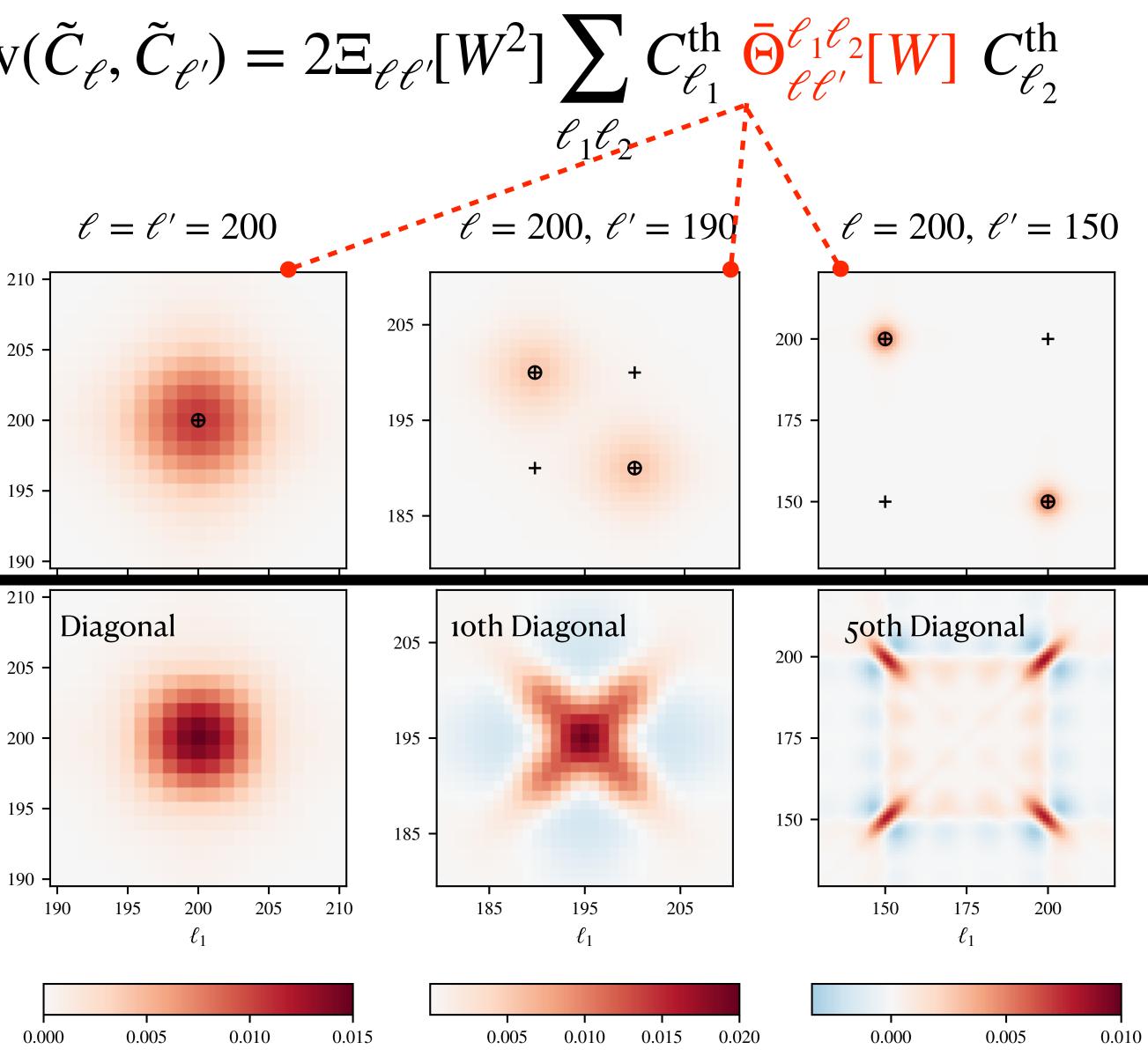
• NKA (Planck) (o)	20
• FRI (+)	S 20
• INKA (image)	19

210 -

205

S 200

195



Approximations	Cov
----------------	-----

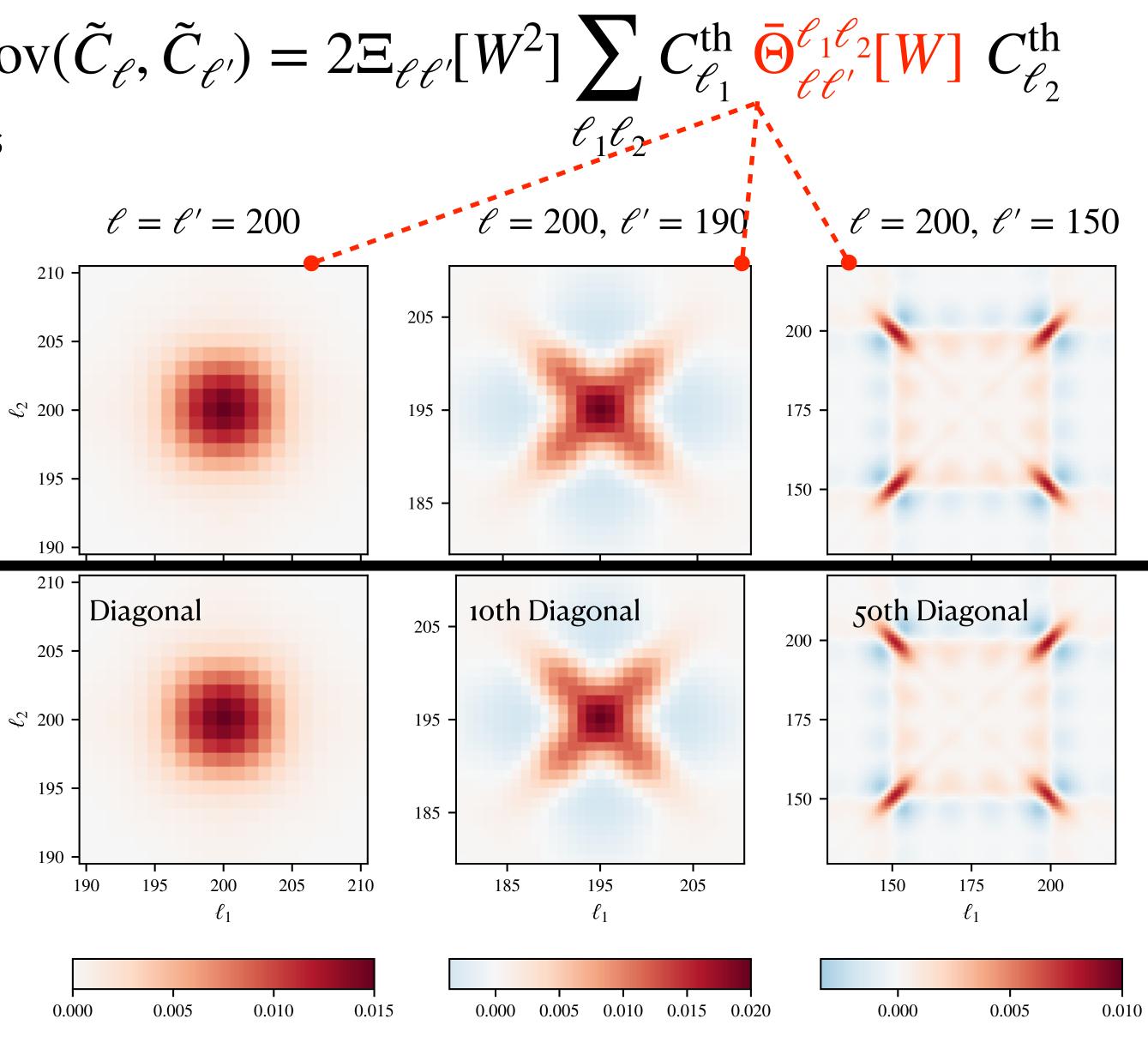
Comparing the covariance coupling kernels

Approximations:

• ACC (this work)

Using the same $\bar{\Theta}$ for identical	ℓ_2
multipole separation $ \ell - \ell' $	

<u>Exact</u>

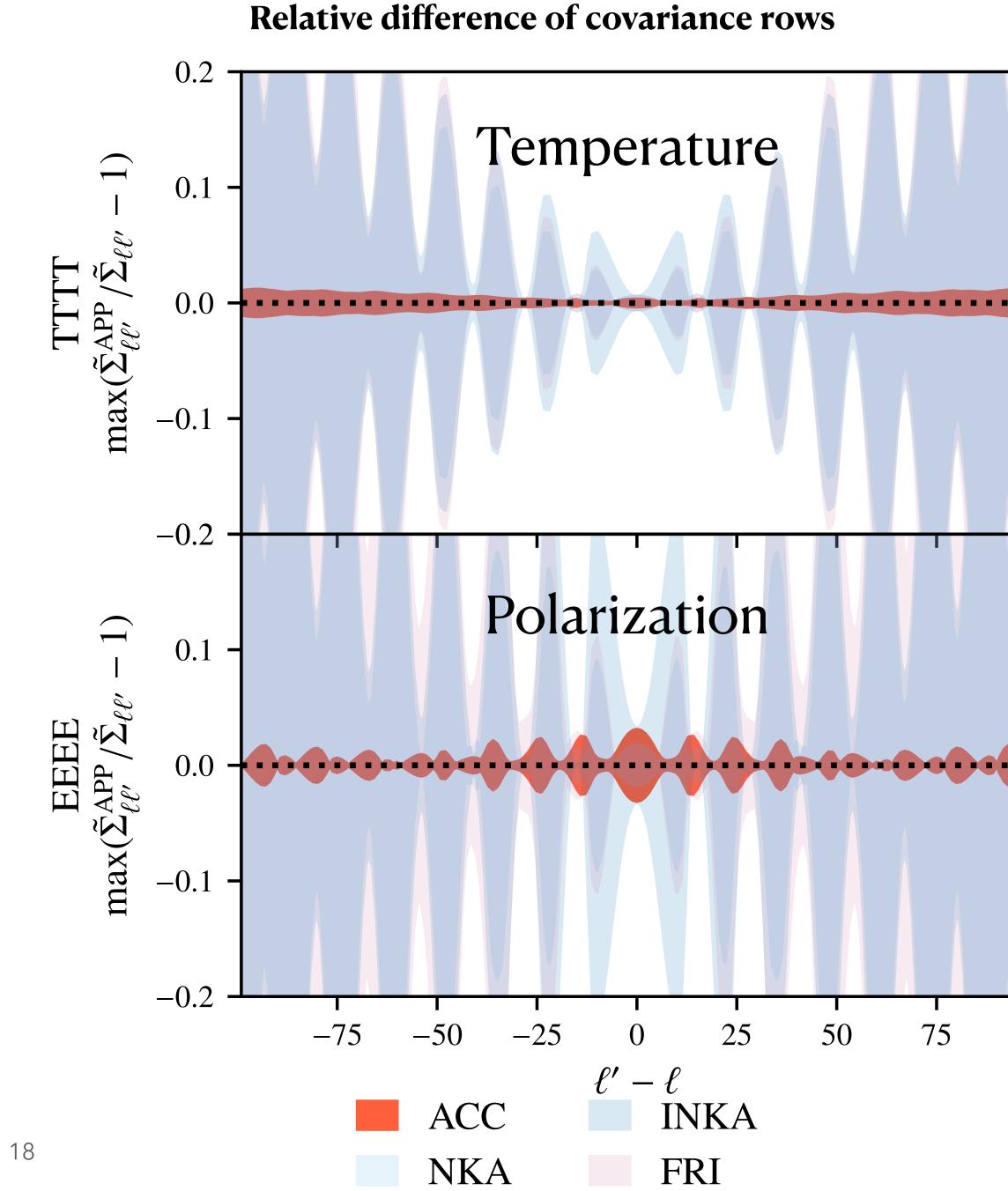


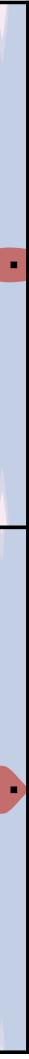
Results

Accuracy of approximations

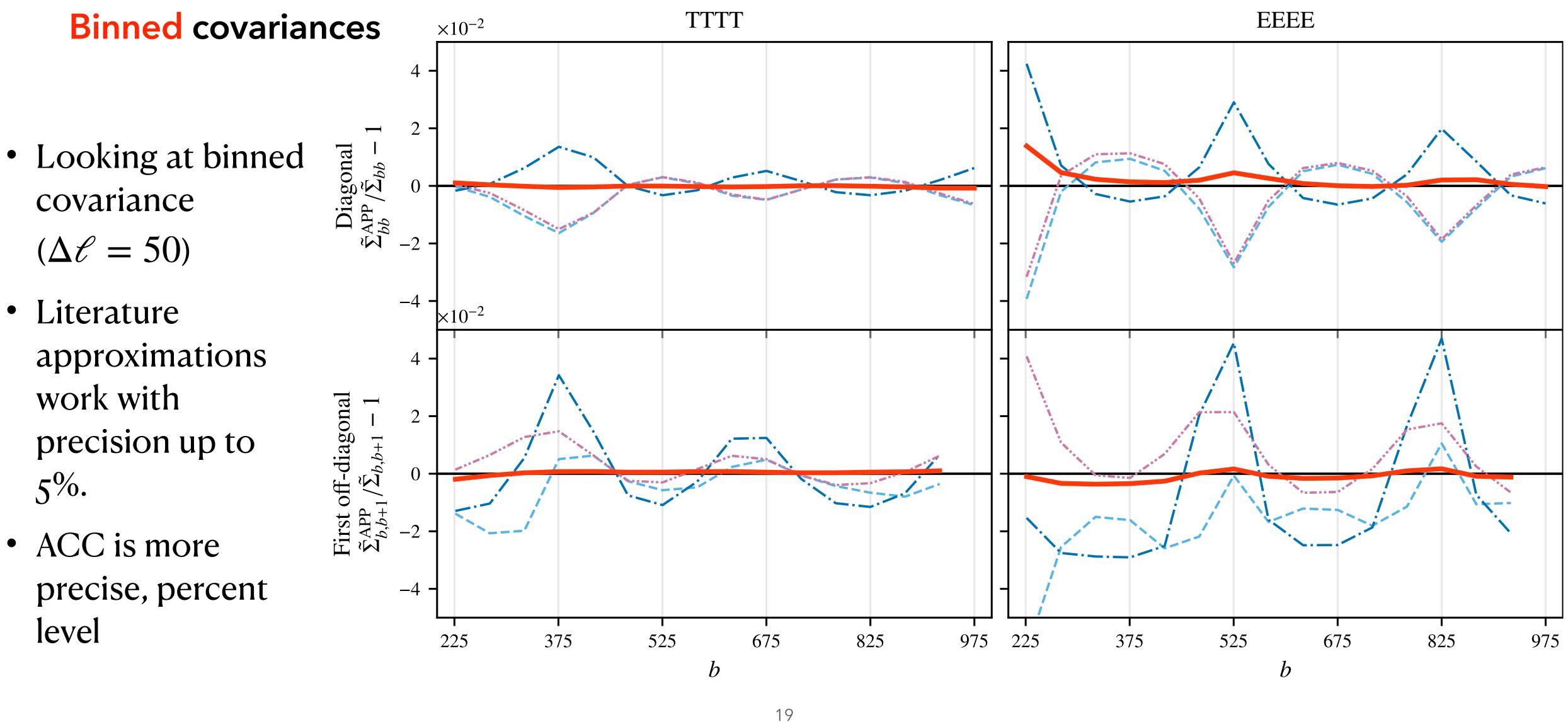
• We look at the relative difference of rows of the covariance centered on the diagonal

• In red ACC





Results



ACC (this work)

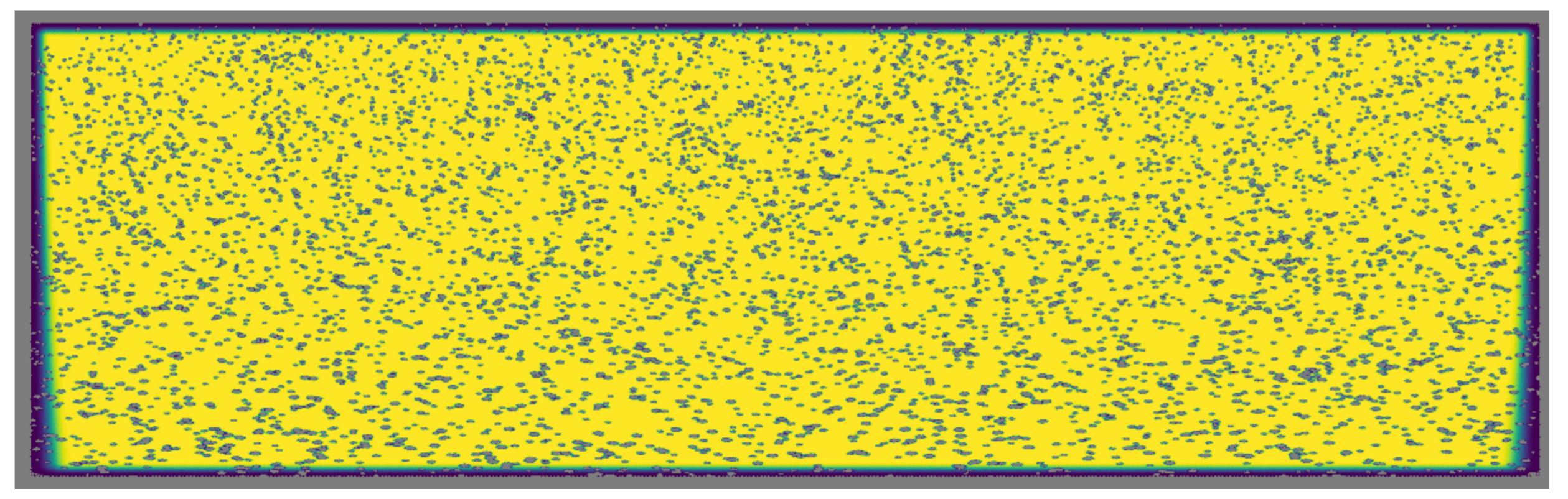
Relative difference of binned approximations vs exact computation

---- NKA ---- INKA ----- FRI

Caveat

Approximations are known to fail when we mask the sources!

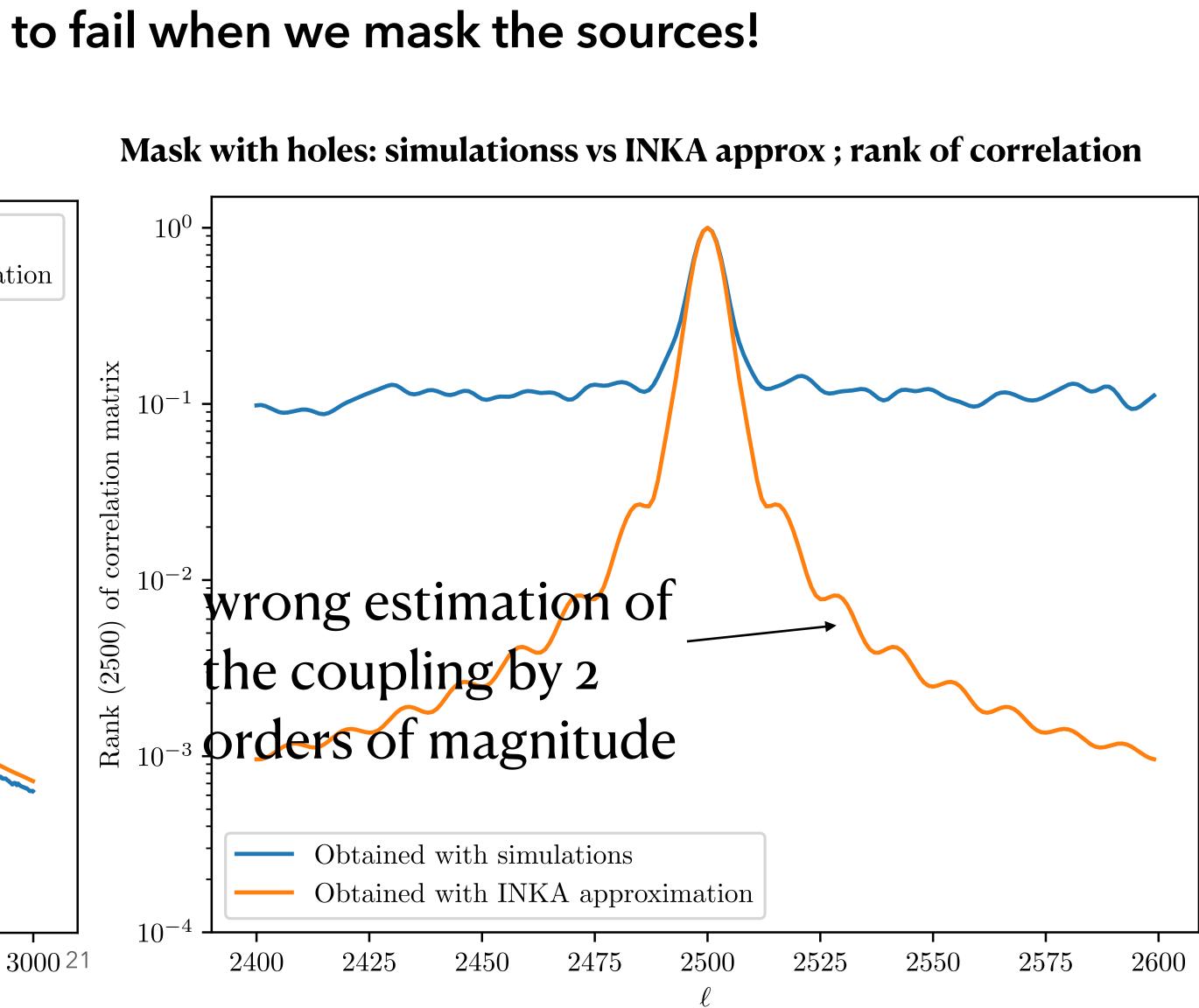
Cartesian view of apodized mask with holes



Approximations are known to fail when we mask the sources!

Mask with holes: simulations vs INKA approx ; diagonals 10^{3} Obtained with simulations Obtained with INKA approximation 10^{2} 10^{1} Diagonal of covariance 10^{-1} 10^{0} wrong 10^{-2} estimation of the variance by 10^{-3} 50% 10^{-4} 1000 500150020002500

Caveat



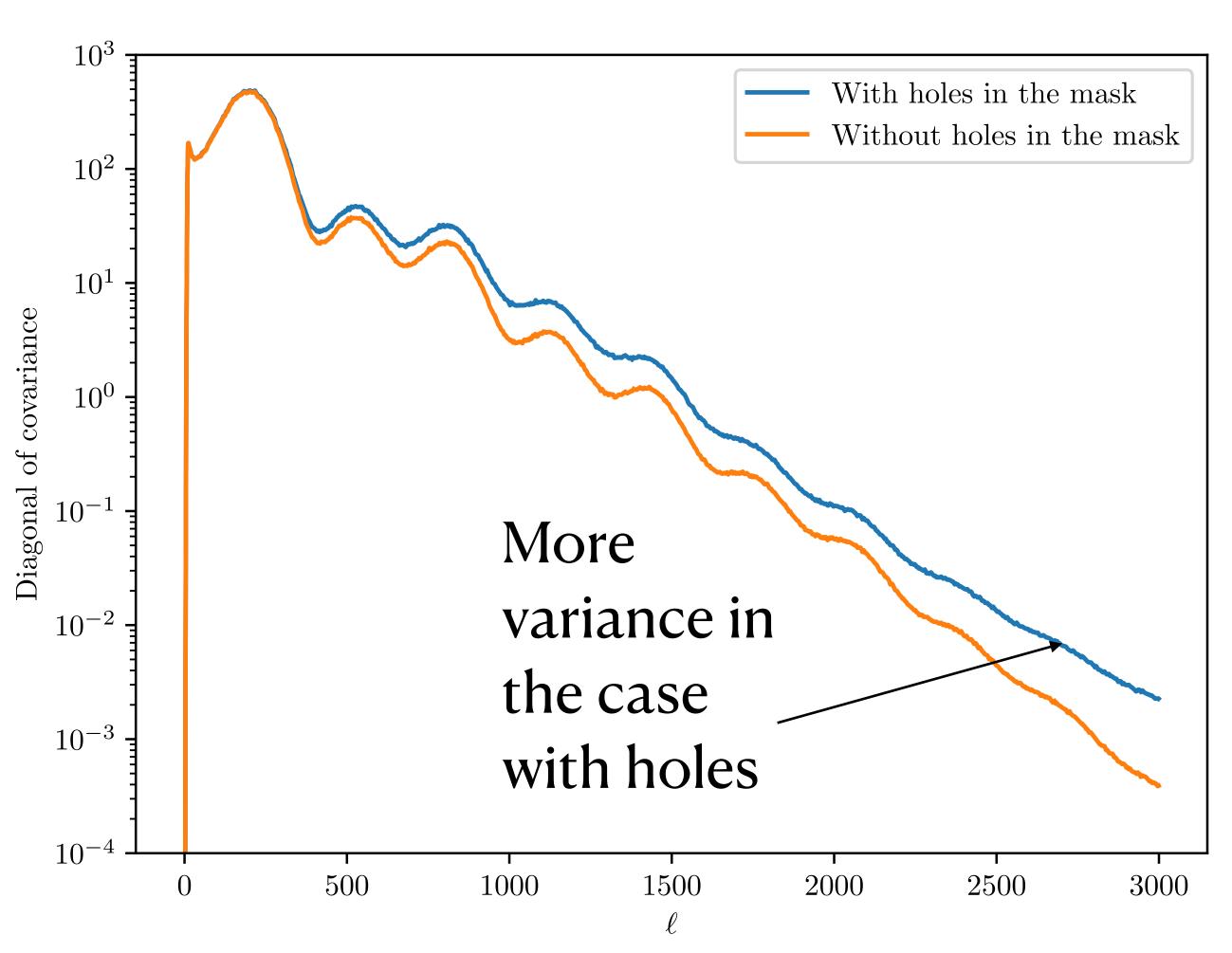
- A. Overview of SPT 2019/2020
- Improving the likelihood pipeline **B**.
 - Accurate covariance matrices [EC, Galli, Benabed, Hivon, Lilley 2022]
 - 2. How to treat point sources
 - Inpainting (Gaussian constrained realization) ĺ.
 - 11. Camphuis *in prep*]
 - 3. CarPool (Accelerated simulations) [Chartier, Camphuis *in prep*]

Outline

Analytical expansion of the point source contribution [Gratton, Challinor, ...,

(2.i.) Inpainting Why?

- Bright clusters or sources need to be masked
- This will create spurious correlations between the modes
- What if we did not mask them?



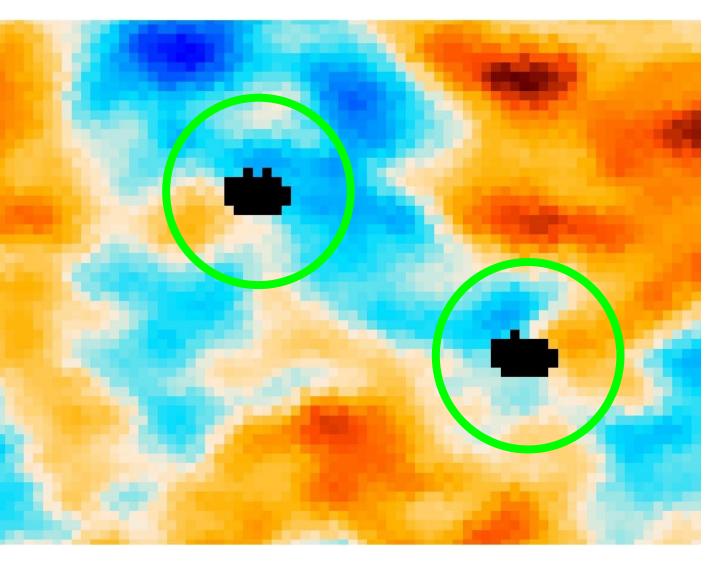
Diagonal of covariance matrices (correctly normalized) in the case with(out) holes

(2.i.) Inpainting Idea

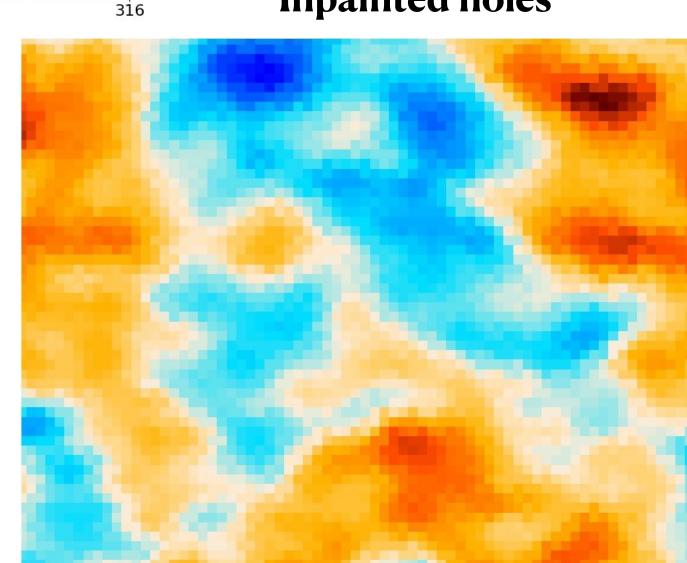
• One can fill the signal inside the holes with a gaussian constrained realization of the CMB anisotropies.

• Challenges: very high resolution maps ($n_{side} = 8192$) with many sources ($N_{sources} \sim 2000$) of varying radii.

Holes in the map



Inpainted holes



 μK

-275

 μK

- A. Overview of SPT 2019/2020
- Improving the likelihood pipeline **B**.
 - Accurate covariance matrices [EC, Galli, Benabed, Hivon, Lilley 2022]
 - 2. How to treat point sources
 - Inpainting (Gaussian constrained realization) 1.
 - 11. Camphuis *in prep*]
 - 3. CarPool (Accelerated simulations) [Chartier, Camphuis *in prep*]

Outline

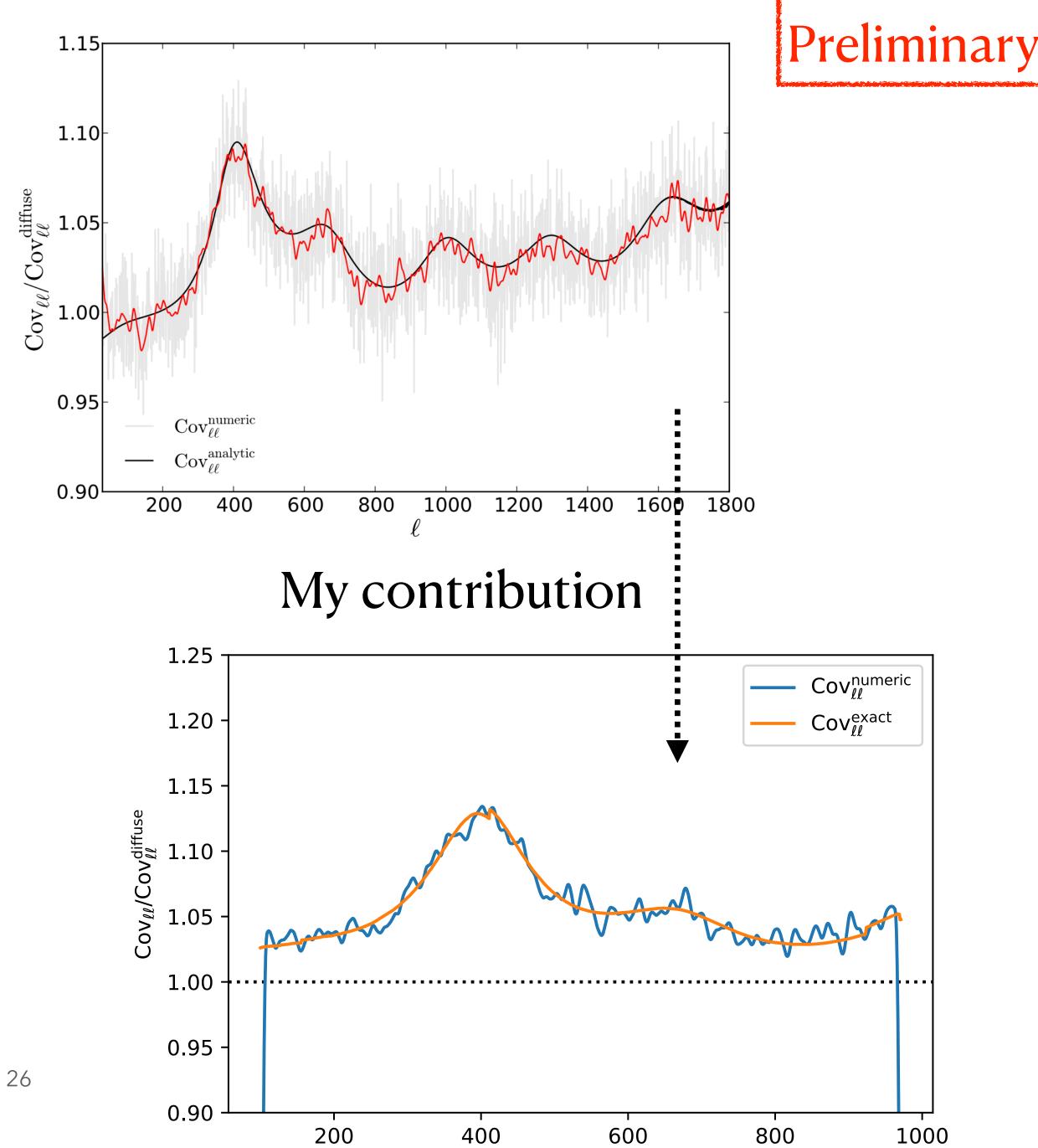
Analytical expansion of the point source contribution [Gratton, Challinor, ...,

(2.ii.) Analytical CMB covariance with sources

[Gratton, Challinor, Migliaccio, Hivon, Lilley, Camphuis]

- Idea: separate mask contributions in diffuse + sources
- Use expansion of the covariance into cumulants
- Here an example for *Planck*

Ratio of covariance diagonals



Quick summary

- We have been working on improving the likelihood pipeline by building an accurate covariance matrix. We are now able to compute exactly the covariance matrix.
- We also have determined the accuracy of existing/new approximations on small survey area.
- We have solutions to deal with the point source masking problem

- A. Overview of SPT 2019/2020
- Improving the likelihood pipeline **B**.
 - Accurate covariance matrices [EC, Galli, Benabed, Hivon, Lilley 2022]
 - 2. How to treat point sources
 - Inpainting (Gaussian constrained realization) 1.
 - 11. Camphuis *in prep*]
 - 3. CarPool (Accelerated simulations) [Chartier, Camphuis in prep]

Outline

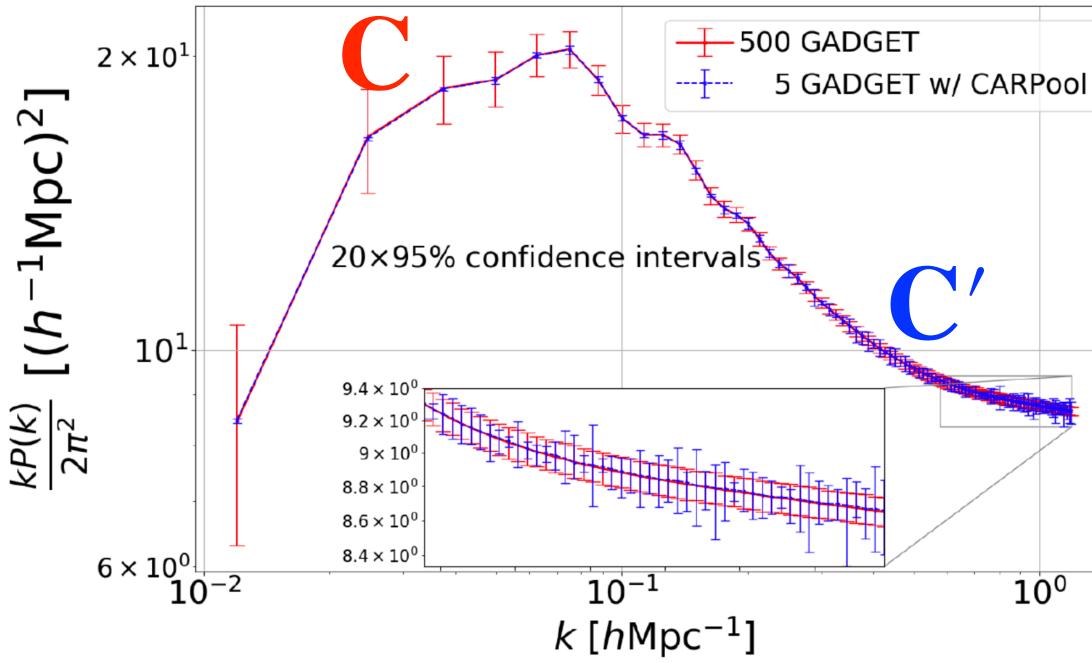
Analytical expansion of the point source contribution [Gratton, Challinor, ...,

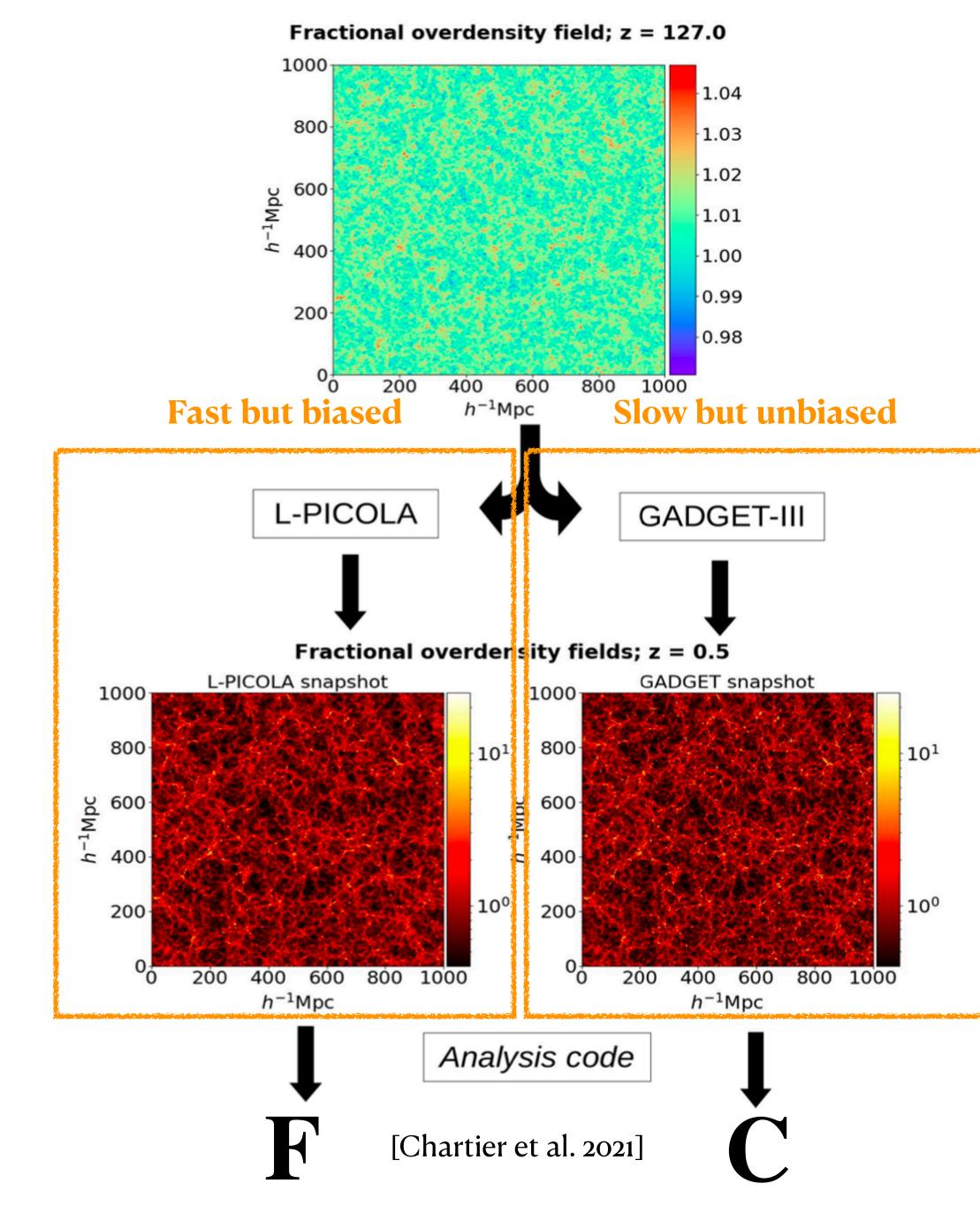
CarPool?

[Chartier, Wandelt et al., 2021]

• An example with matter power spectrum

Very precise power spectrum with 100 times less simulations !





CarPool?

Accelerated simulations using correlations between estimators

- [Chartier, Wandelt et al., 2021]
- Two ingredients:
 - **surrogates** *F* : a fast or well-known estimator.
 - simulations *C* : a slow or poorly-known estimator. We want to estimate its mean or its covariance using variance reduction method.

They need to be correlated (start from same random seed!): $\rho = \text{Pearson}(C, F) \sim 0.8 - 1$.

$$C' = C - \beta(F - \langle F \rangle)$$

$$\operatorname{var}[C'] = \operatorname{var}[C] - 2\beta \operatorname{cov}[C, F] + \beta^2 \operatorname{var}[F]$$

$$\operatorname{if} \beta = \frac{\operatorname{cov}[F, C]}{\operatorname{var}(F)} \text{ then } \frac{\operatorname{var}(C')}{\operatorname{var}(C)} = 1 - \beta$$

Covariance with holes in the mask Method

• <u>Motivation</u>: analytical approximations of the covariance matrix fail when including sources in the computation. A solution could be to use simulations to obtain the covariance. But what if you update your point source mask ?

Pipeline:
$$(T, Q, U)$$
 $\xrightarrow{W^{3600}} C_{\ell}$
 $\xrightarrow{W^{3100}} F_{\ell}$

- Surrogate: *F_l* because we have already computed the covariance
 Simulations: *C_l* because we want to estimate the covariance (with a few
- Simulations: C_e because we want to e simulations only!)

Covariance with holes in the mask Method

• <u>Motivation</u>: analytical approximations of the covariance matrix fail when including sources in the computation. A solution could be to use simulations to obtain the covariance. But what if you update your point source mask ?

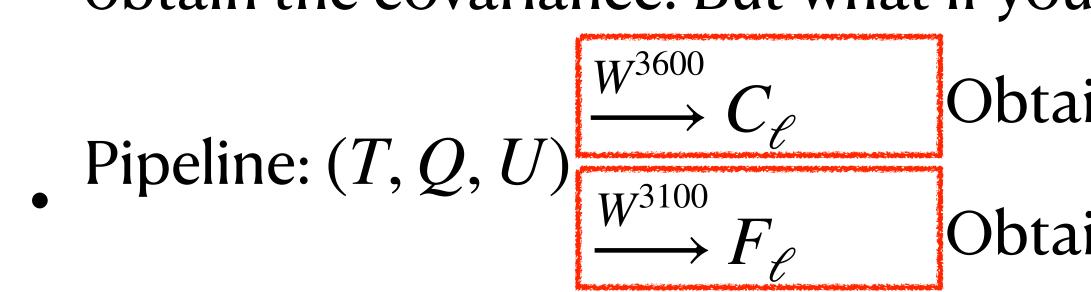
• Pipeline:
$$(T, Q, U)$$
 $\xrightarrow{W^{3600}} C_{\ell}$
 $\xrightarrow{W^{3100}} F_{\ell}$ Obtai

- Surrogate: F_{ℓ} because we have already computed the covariance
- Simulations: C_{ℓ} because we want to estimate the covariance (with a few simulations only!)

ined on a mask with 3100 holes

Covariance with holes in the mask Method

• <u>Motivation</u>: analytical approximations of the covariance matrix fail when including sources in the computation. A solution could be to use simulations to obtain the covariance. But what if you update your point source mask ?



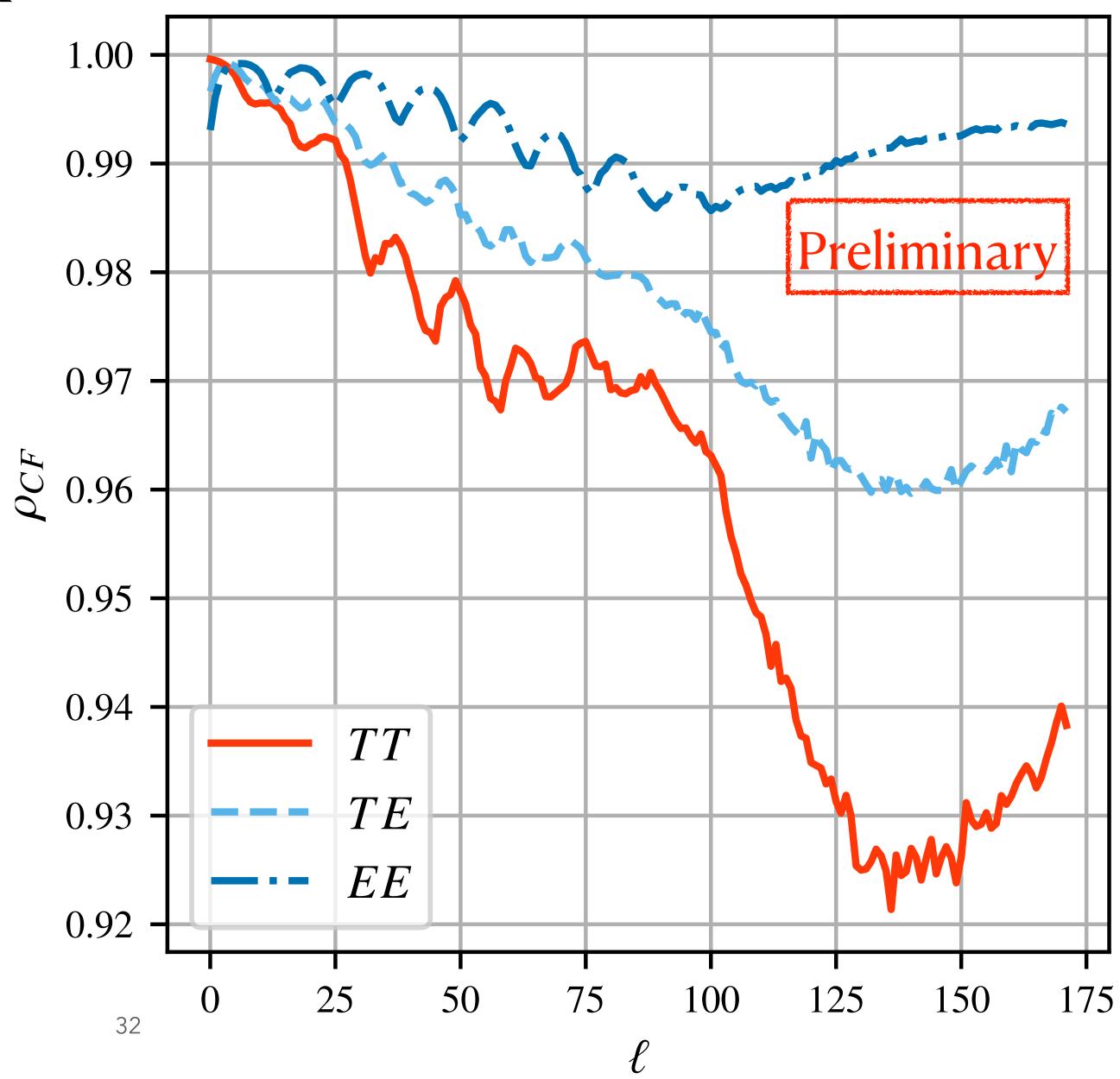
- Surrogate: F_{ℓ} because we have already computed the covariance
- Simulations: C_{ℓ} because we want to estimate the covariance (with a few simulations only!)

- Obtained on a mask with 3600 holes
- Obtained on a mask with 3100 holes

Covariance with holes in the mask

Correlation

• Very good correlation between simulation/surrogate!

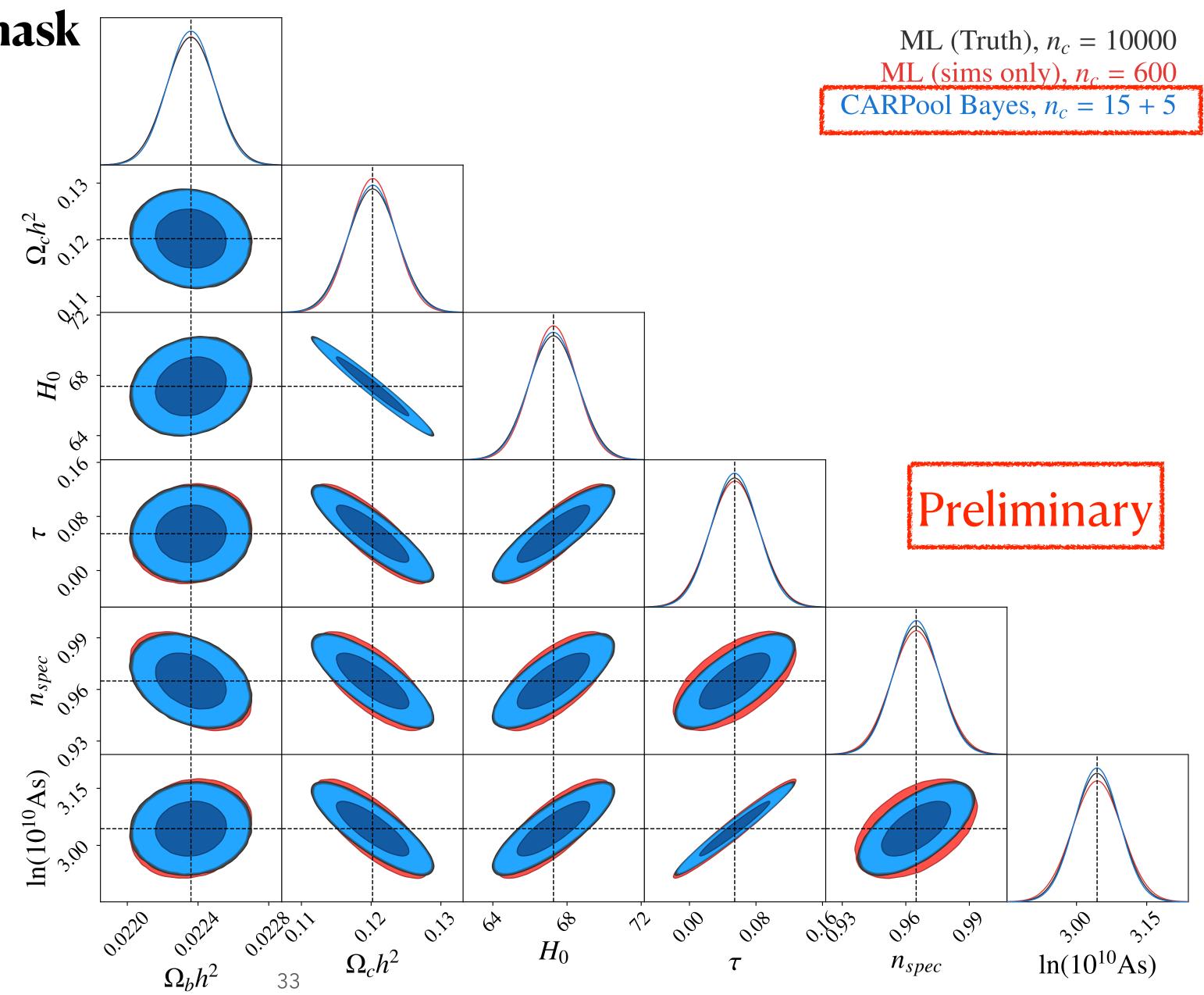


Covariance with holes in the mask

Results

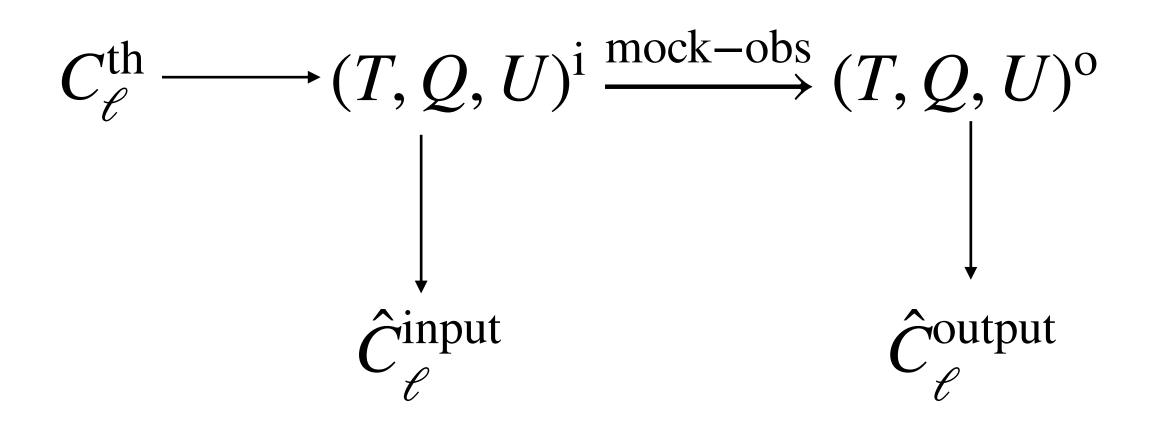
Fisher plots with 3 covariances:

- ML: using 10 000
 simulations, considered as
 « truth »
- ML 600: same but with only 600 simulations
- CarPool Bayes: using Carpool, and only 15+5 simulations (training + testing)



Carpool for mock-observations? Applying this technique to our mock-observations pipeline

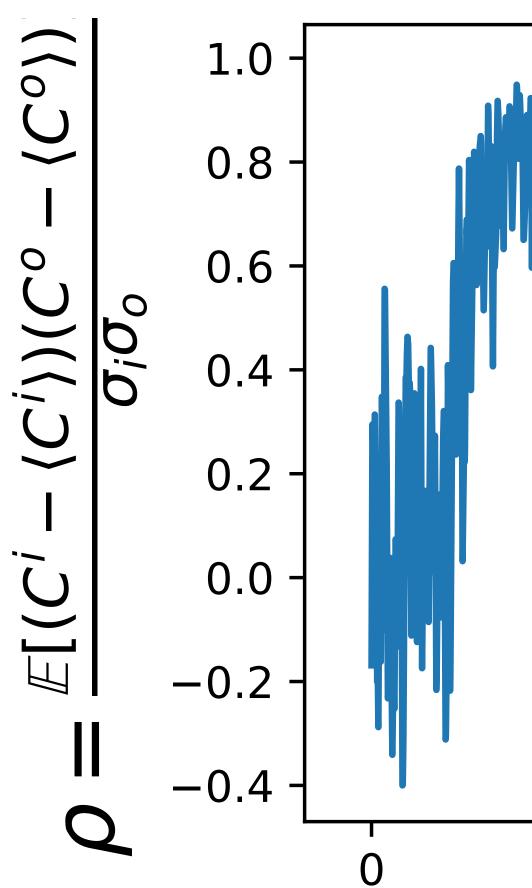
- <u>Motivation</u>: we want to use mockobservations to compute the transfer functions or to validate our analytical computation.
- Surrogate: $F_{\ell} \equiv \hat{C}_{\ell}^{\text{input}}$ because we know precisely the covariance (only CMB!)
- Simulations: $C_{\ell} \equiv \hat{C}_{\ell}^{\text{output}}$ because we want to estimate the covariance (which includes filtering)



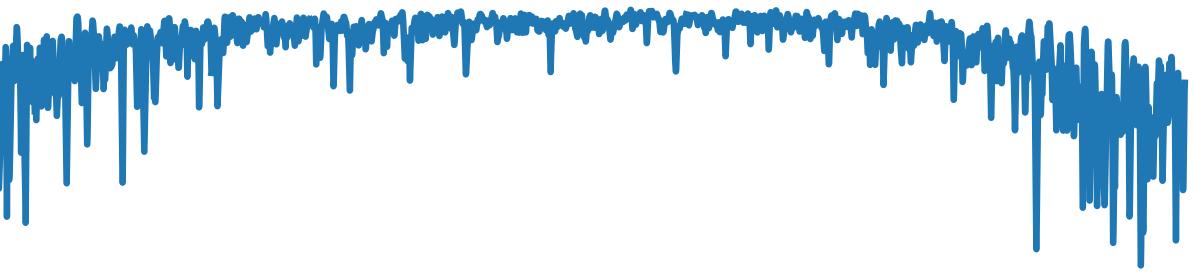
Carpool for mock-observations? Applying this technique to our mock-observations pipeline

- Very high correlations
 between features
 of input vs
 features of output.
- This could help us to do

 « effectively » 10 or
 100 times more
 simulations



Pearson correlation coefficient of input vs output





• SPT-3G will allow us to do great science.

accurate covariance matrix.

The state of the s

.

• We are currently working on approaches to improve the pipeline, with promising results.

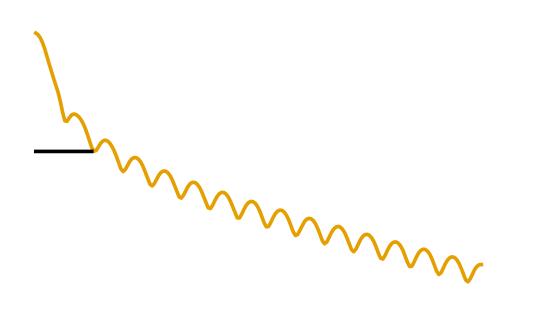
Conclusions

• We have been working on improving the likelihood pipeline by building an

Thank you

General method

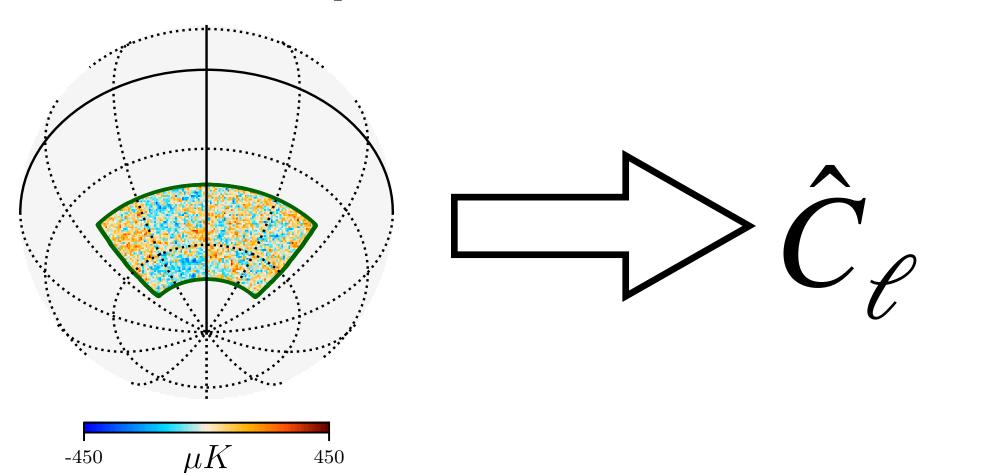
-450 μK 450



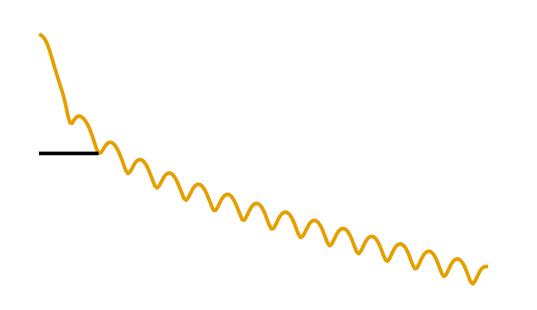
Masked CMB maps

Power spectrum based gaussian likelihood

Generalmethod



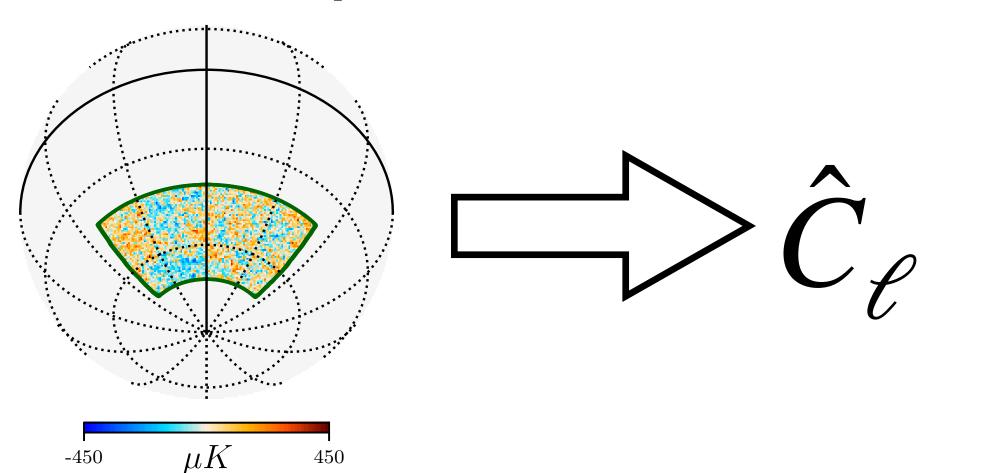
Masked CMB maps



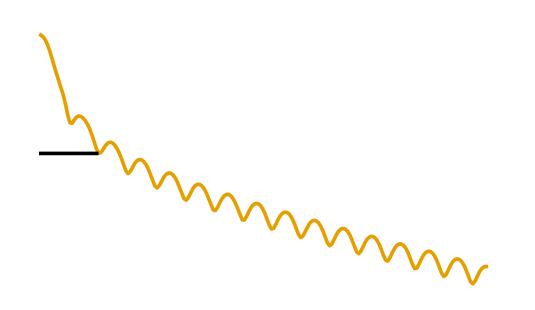
Power spectrum based gaussian likelihood

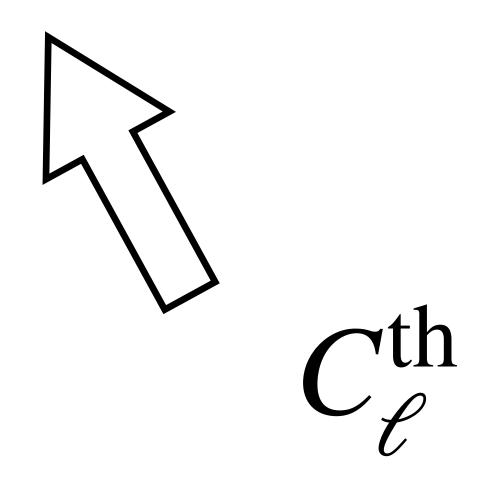
General method

Power spectrum based gaussian likelihood



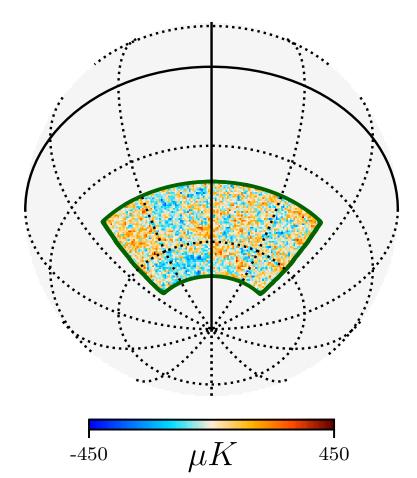
Masked CMB maps

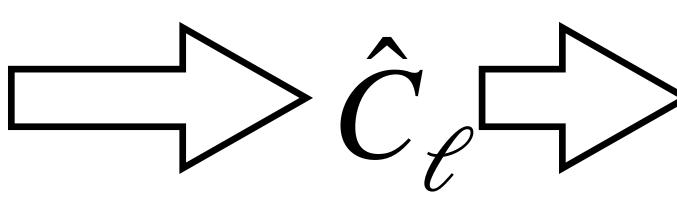


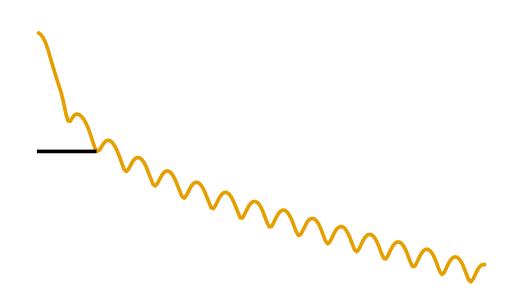


Generalmethod Power spectrum based gaussian likelihood

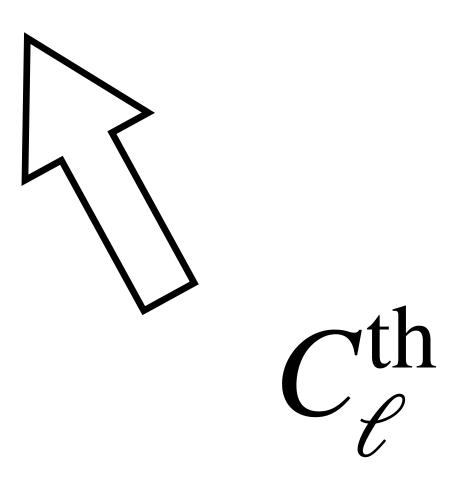
Masked CMB maps

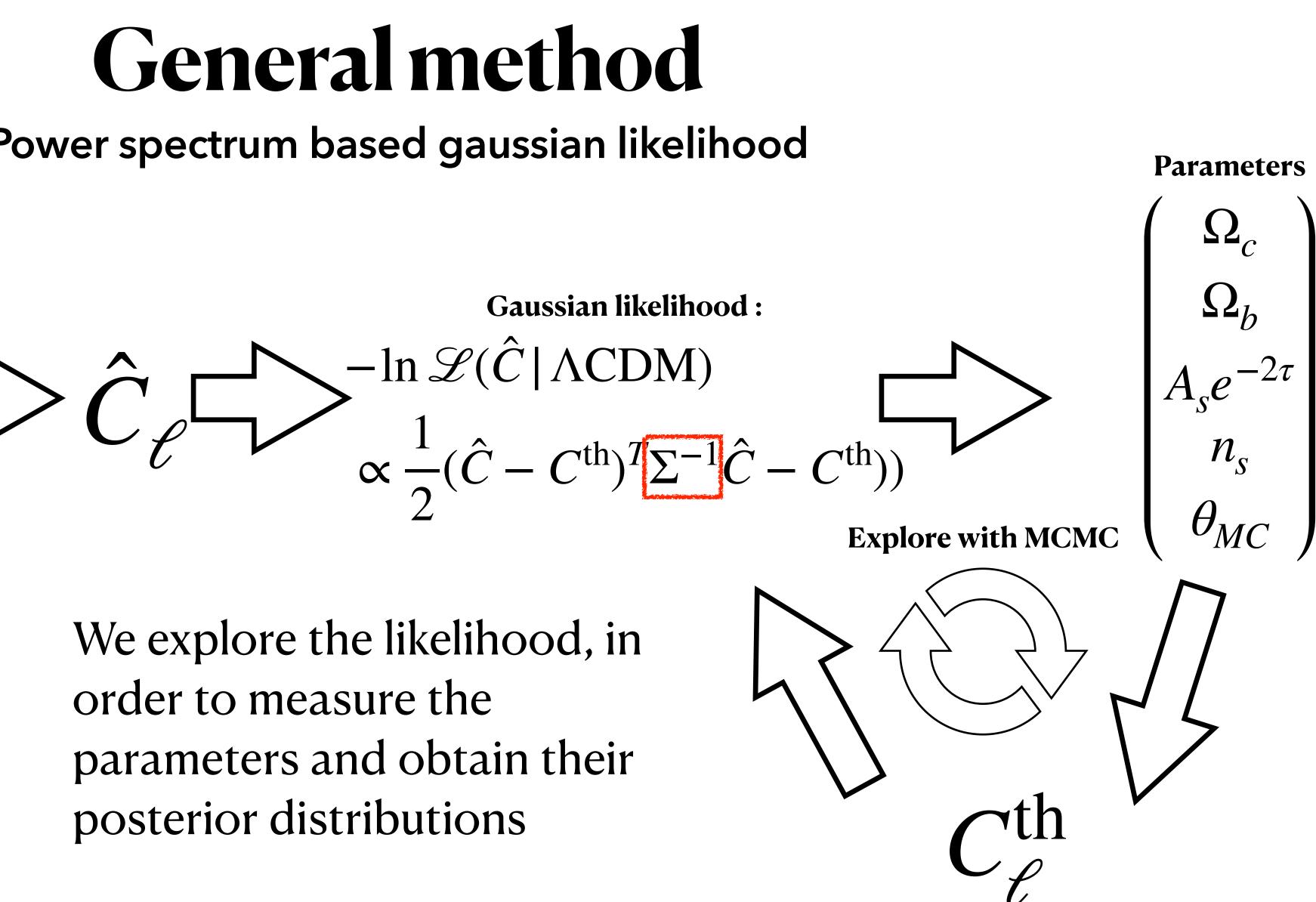


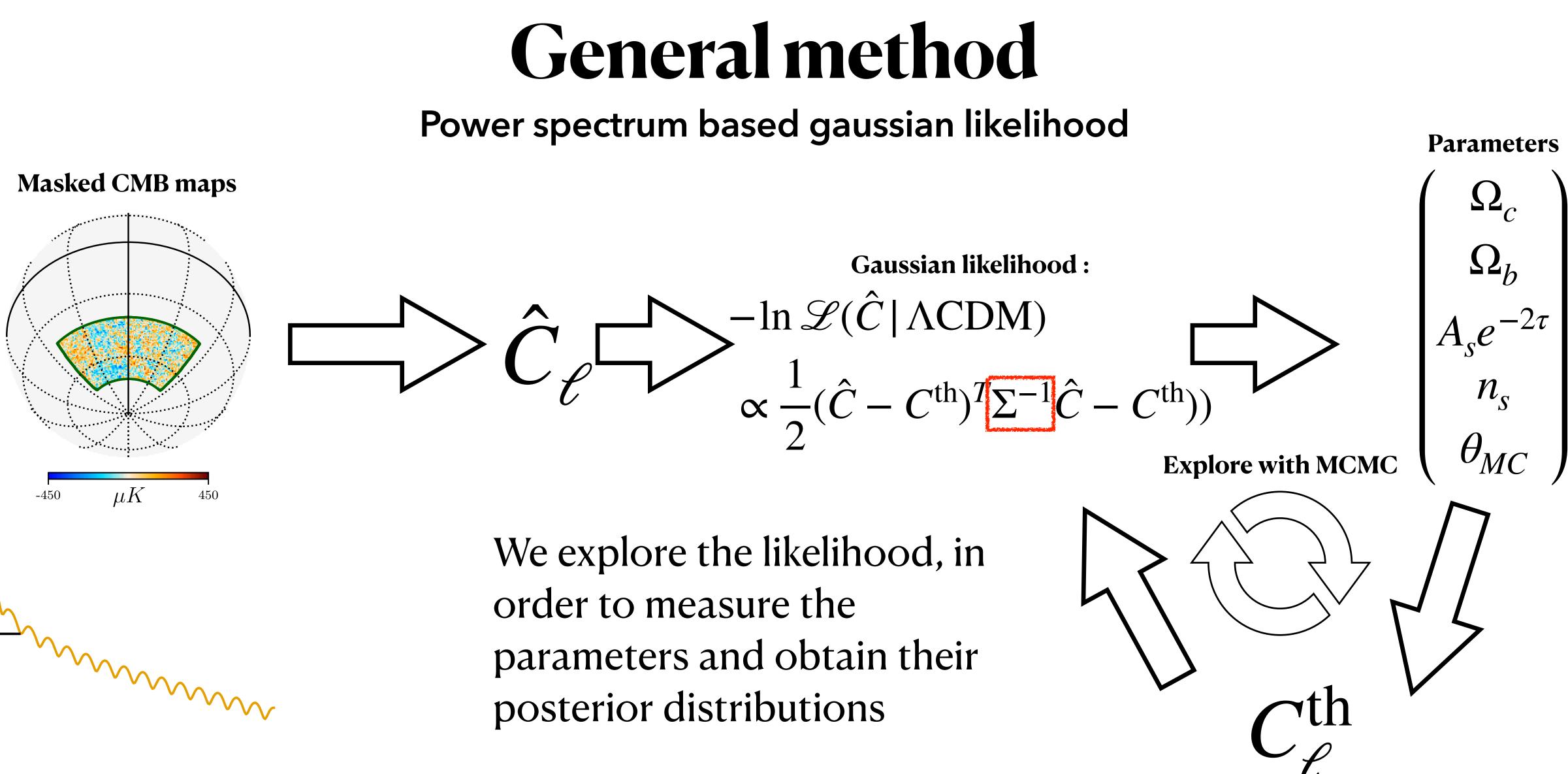


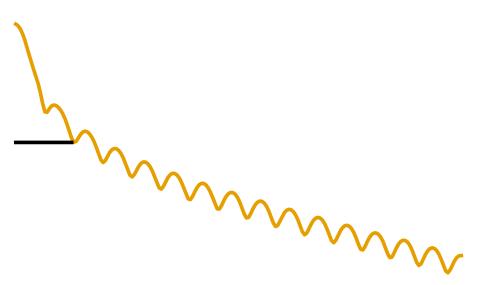


Gaussian likelihood : $\sum_{\alpha} \frac{-\ln \mathscr{L}(\hat{C} \mid \Lambda \text{CDM})}{\frac{1}{2} (\hat{C} - C^{\text{th}})^T [\Sigma^{-1} \hat{C} - C^{\text{th}}))}$

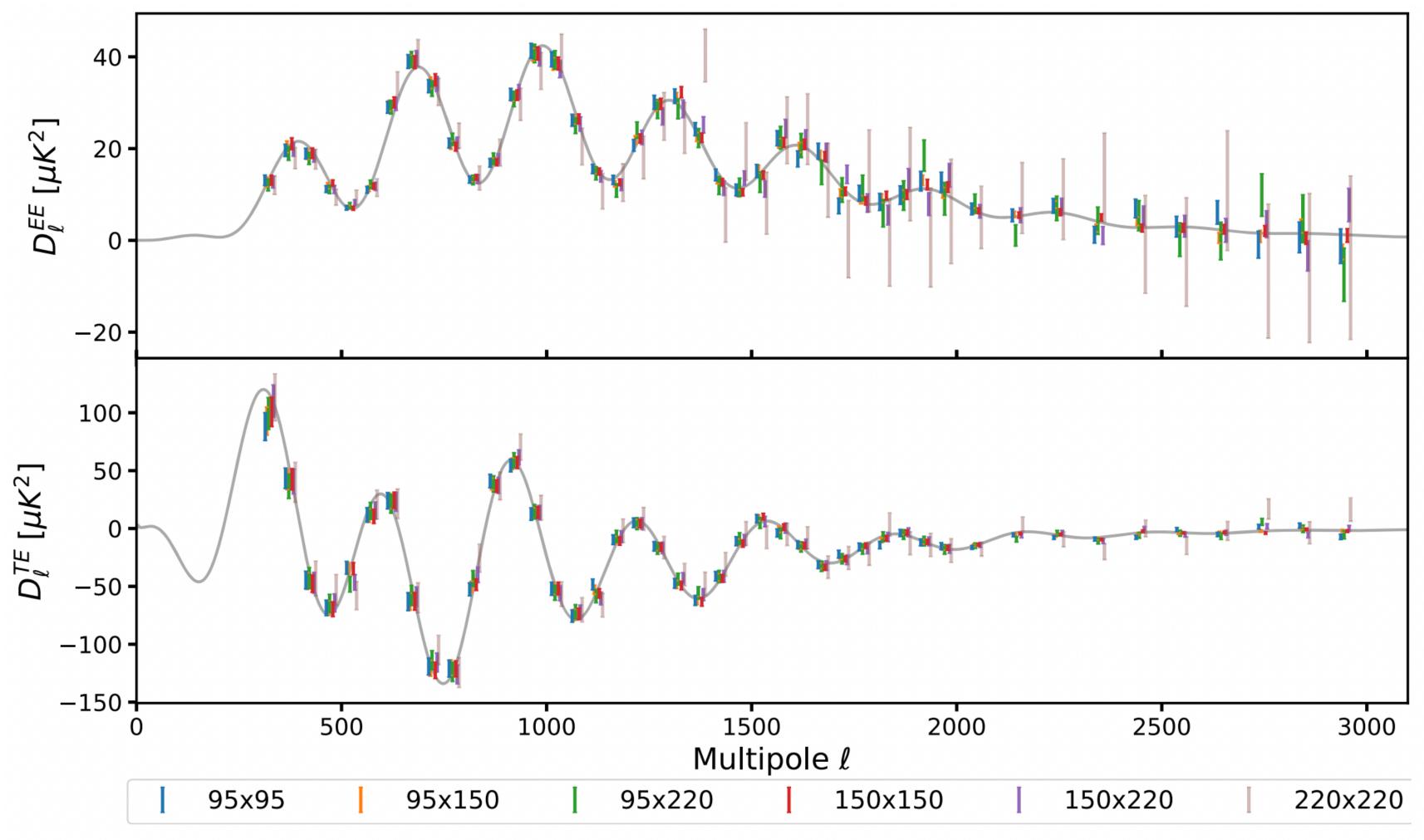








SPT-3G2018 Power spectra



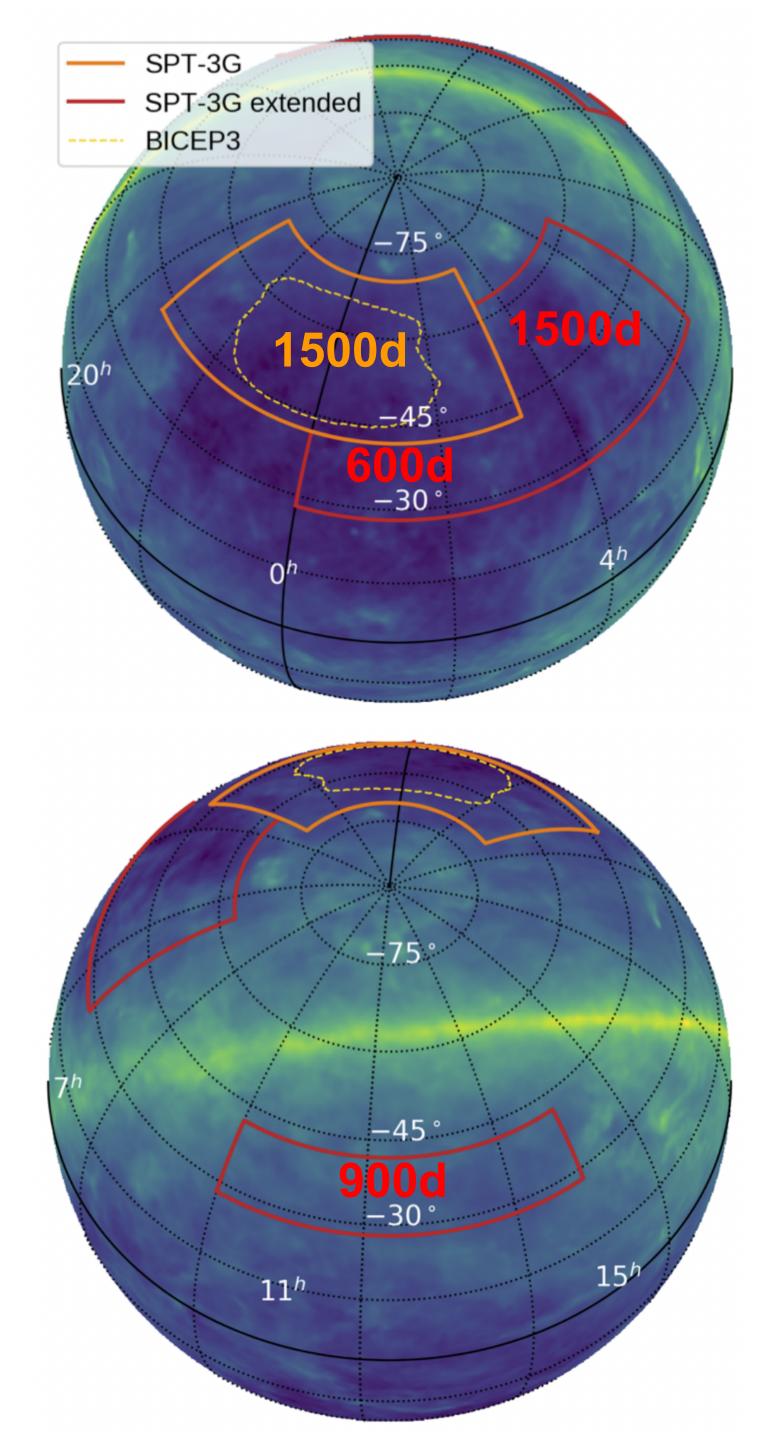
³⁹ Auto/cross-frequencies spectra [Dutcher et al. 2021]

SPT-3G - Summer fields

Prospects - work by Federica Guidi

- In addition to the winter fields:
 3000 deg2 = 1500 (3.1%) + 600 (1.4%) + 900 (2.1%)
- Observing ~4 months per year
- Noise levels for summer 19/20 + 20/21:
 ~ 11, 10, 38 μK-arcmin (T)
 ~ 16, 14, 54 μK-arcmin (pol)
- Map depth of 2 years of summer observations is
- ~1.4 times better than the 2018 winter field maps
- ~2.5 times worse than the 2019+2010 winter fields
- 3 times larger sky fraction than winter
 → reduce sample variance

Slide by F. Guidi

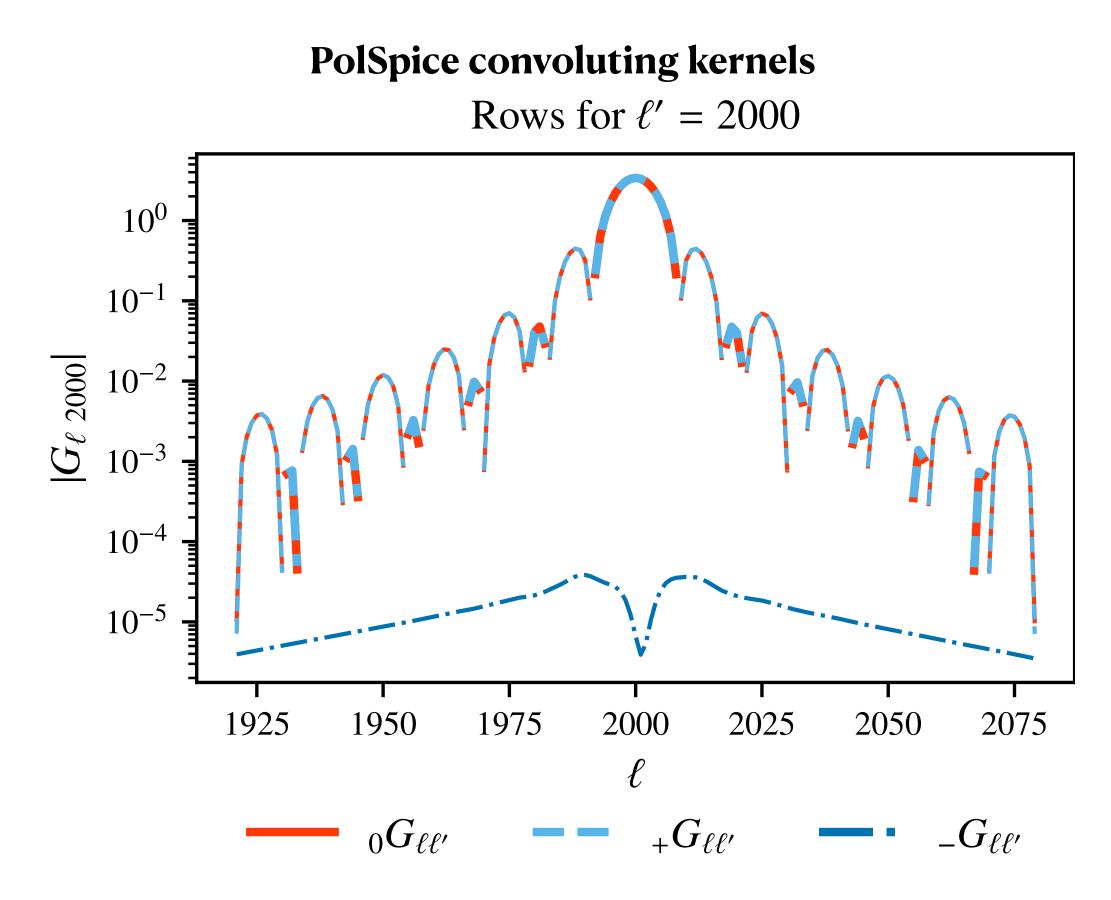


PolSpice

• For this analysis we will use PolSpice estimator \hat{C}_{ℓ} [Szapudi et al. 2001] [Chon et al. 2004]

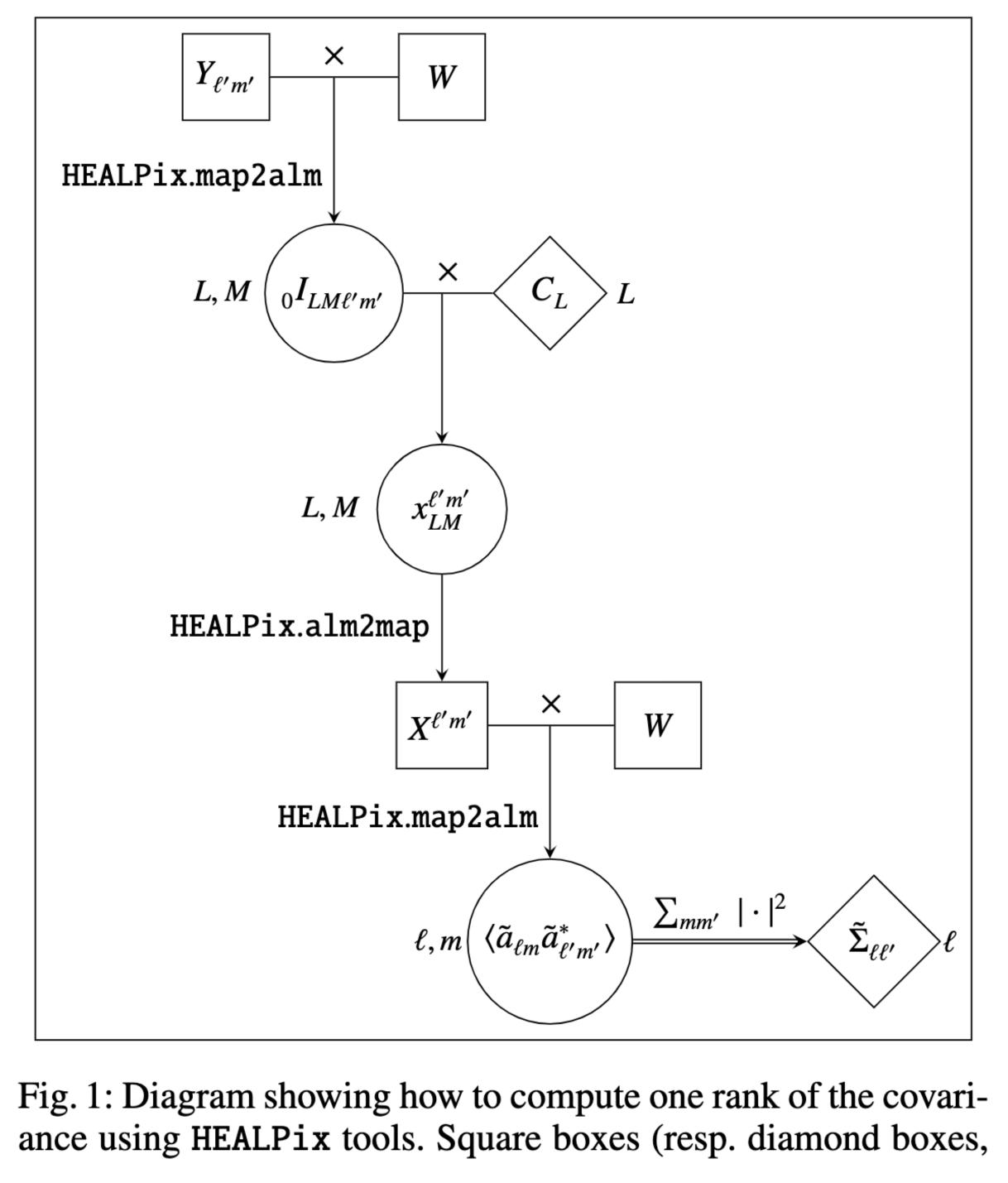
$$\hat{C}_{\ell}^{\mathrm{TT}} = \sum_{\ell'} {}_{0}G_{\ell\ell'} \tilde{C}_{\ell'}^{\mathrm{TT}}$$

- and little more sophisticated for polarization, with kernels $_+G$, $_-G$, $_\times G$
- Accuracy of approximations extend to that case



In thick lines are positive values, narrow lines are negative values

Exact covariance Algorithm

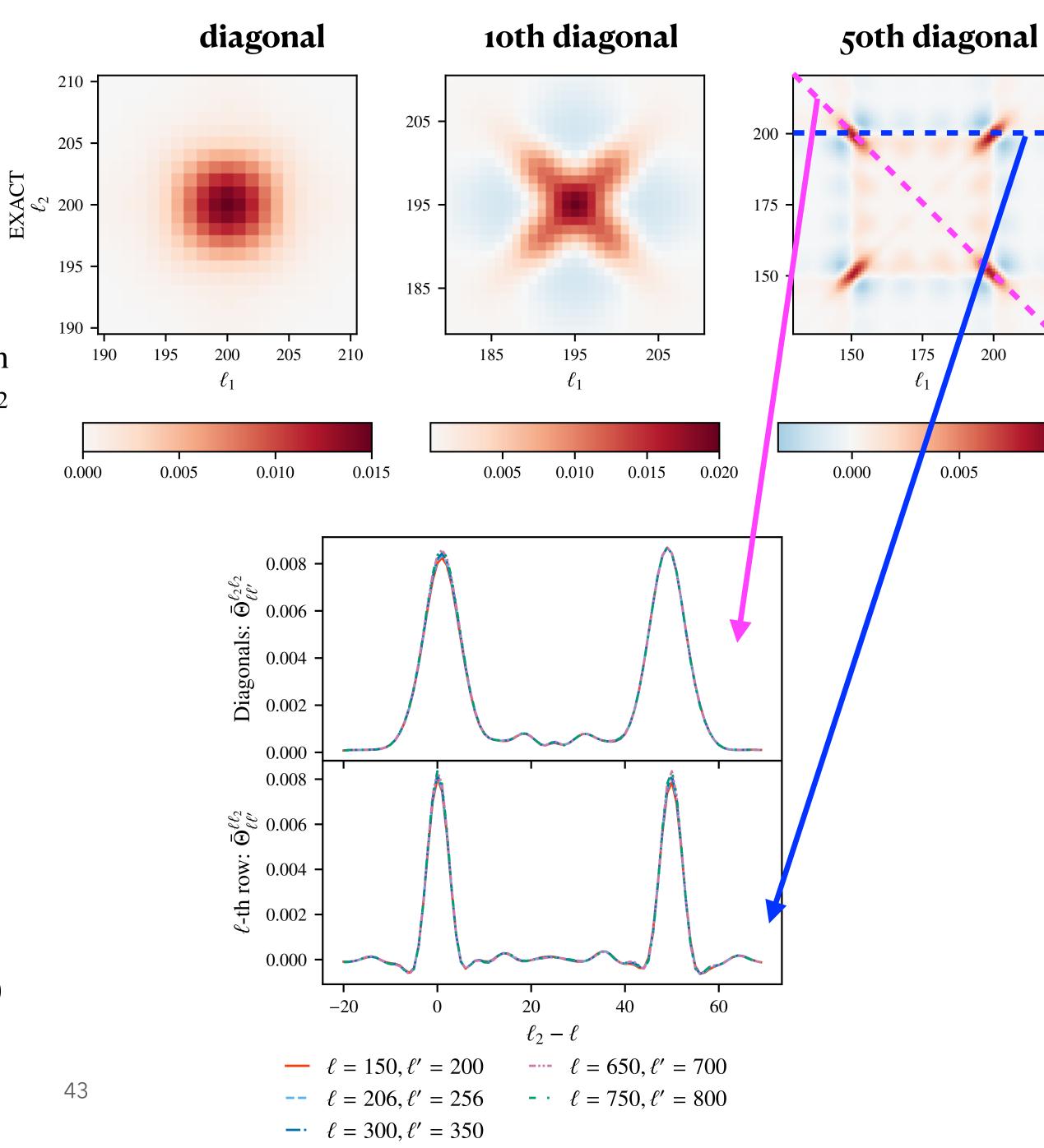


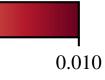
ACC

New approximation

 $\operatorname{Cov}(C_{\ell}, C_{\ell'}) = 2\Xi_{\ell\ell'}[W^2] \sum C_{\ell_1}^{\operatorname{th}} \bar{\Theta}_{\ell\ell'}^{\ell_1\ell_2}[W] C_{\ell_2}^{\operatorname{th}}$ $l_1 l_2$

- ACC (approximated covariance coupling)
- Scales in $\mathcal{O}(d_{\max}n_{\text{side}}^4)$
- d_{\max} : maximum diagonal that you want to compute
- $n_{\rm side}$: map resolution used to compute $\bar{\Theta}$



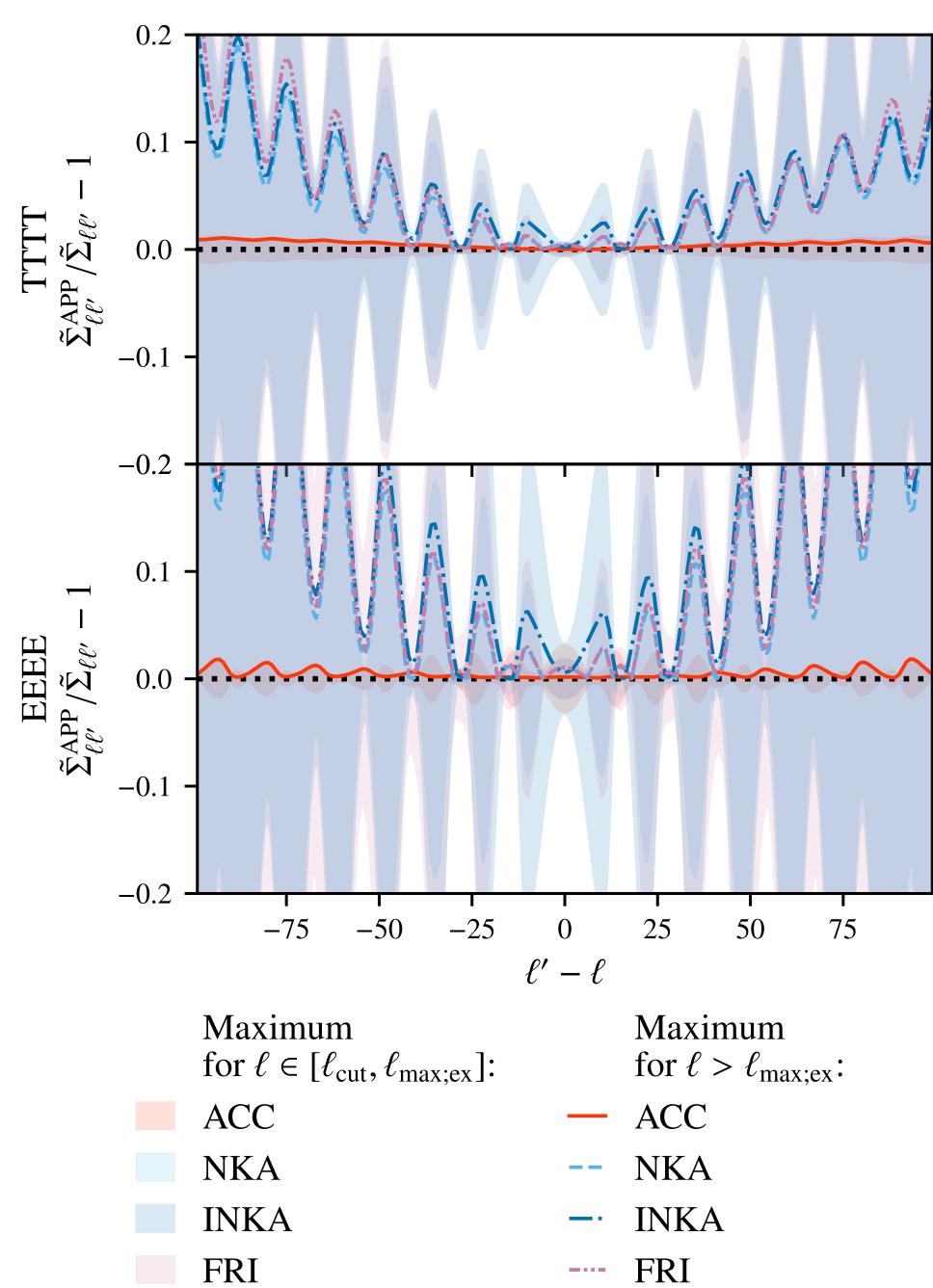


Results

Higher multipoles ?

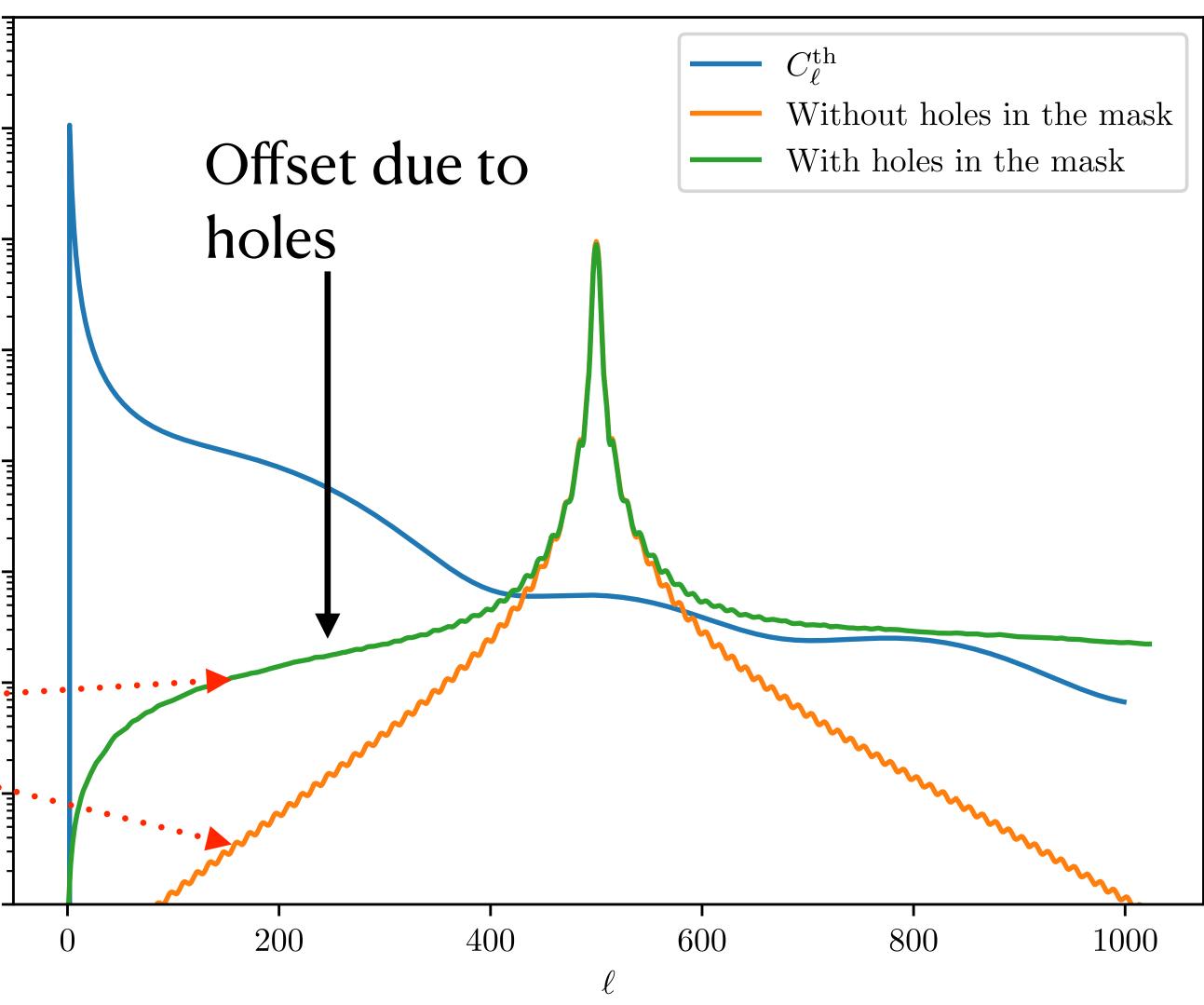
• We look at the relative difference of rows of the covariance centered on the diagonal

• I add to the previous plot the result for larger rows but among a sparse number of them



Relative difference of covariance rows

Caveat	10^4
Why?	10^{3}
• The holes in the mask gives $\overline{\Theta}$ an offset	10^2
• This will be convoluted with	10^{0}
the CMB power spectrum $Cov(\tilde{C}_{\ell}, \tilde{C}_{\ell'}) = 2\Xi_{\ell\ell'}[W^2] \sum_{\ell'} C_{\ell_1}^{\text{th}} \bar{\Theta}_{\ell\ell'}^{\ell_1 \ell_2}[W] C_{\ell_2}^{\text{th}}$	10^{-1}
$\ell_1\ell_2$	
 (In the plot, Θs have been renormalized) 	10^{-4}



Inpainting Final bias on the spectrum

• $C_{\ell} \to T, Q, U \xrightarrow{W} \hat{C}_{\ell}^{\text{bare}}$

- $T, Q, U \xrightarrow{\text{Inpainting}} [T, Q, U]^{\text{filled}} \xrightarrow{W} \hat{C}_{\ell}^{\text{filled}}$
- Here we plot $\frac{\langle \hat{C}_{\ell}^{\text{filled}} \rangle}{\langle \hat{C}_{\ell}^{\text{bare}} \rangle} 1$ • Error bars are $\frac{\sigma(\hat{C}_{\ell}^{\text{bare}})}{\sqrt{N_{\text{sim}} = 100}}$
- Correction for the covariance ? only f_{sky} ?

