Searching for physics beyond the standard model with Planck, SPT, and ACT data.

Lennart Balkenhol University of Melbourne 20/06/2022

Image Credit: Aman Chokshi

- Introduction
- Constraining Physics Beyond the Standard Model
 - Primordial Magnetic Fields
 - Early Dark Energy
- New Results from the South Pole Telescope

Content

CMB Cosmology Overview

- After inflation, early universe is hot and dense, pressure waves permeate
- Cooling through expansion until recombination
- Dynamics of the early universe "frozen" into the CMB
- CMB observations helped establish ACDM as the standard model

Image Credit: ESA/Planck Mission

- What exactly *are* dark energy and dark matter?
- What is the hierarchy and mass of neutrinos?
- Discordance between different probes

ACDM is Insufficient

H_0 and S_8 tensions

Image Credit: ESA/Planck Mission

Planck

6/2 4 Image Credit: ESA Enabling & Support Planck Mission

Image Credit: Aman Chokshi

SPT

ACT

Image Credit: Debra Kellner

Planck

- Satellite mission w/ full sky coverage
- 52 detectors
 2018 data release

 $TT/TE/EE \ell < 2500$

Planck Collaboration 2018, arXiv:1907.12875 Current survey SPT-3G covering 1500deg²
SPT-3G: 15,000 detectors
2018 data (released 2021)
TE/EE 300 < ℓ < 3000

Dutcher et al. 2021 arXiv:2101.01684

SPT

ACT

 Power Spectra from 5400deg²

- ACTpol: 3068 detectors
- Data release 4 (2020)

TT/TE/EE
 325 < l < 7550*

Aiola et al. 2021 & Choi et al. 2021 arXiv:2007.07288 & 2007.07289

Primordial Magnetic Fields

Consistency of Planck, ACT and SPT constraints on magnetically assisted recombination and forecasts for future experiments S. Galli, L. Pogosian, K. Jedamzik, L. Balkenhol 2021, Phys. Rev. D 105, 023513, arXiv:2109.03816

Image Credit: ESA/Planck Mission

Primordial Magnetic Fields

- Magnetic fields are ubiquitous... so why not?
- PMFs lead to inhomogeneities: baryon clumping factor, b
- Inhomogeneities lead to earlier recombination

Higher H_0 **inferred from CMB observations**

Image Credit: ESA/Planck Mission

New Limits on Primordial Magnetic Fields

- Data consistent with no PMFs: b < 0.54
- Signs of internal inconsistency in ACT EE/TE data?
- SPT data lacks TT information, fits wellknown features in power spectrum
- Planck and SPT are consistent, ACT marginally

Weird ACT Constraints

- Data consistent with no PMFs: b < 0.54
- Signs of internal inconsistency in ACT EE/TE data?
- SPT data lacks TT information , fits wellknown features in power spectrum
- Planck and SPT are consistent, ACT marginally

TT crucial to constrain PMFs

- Data consistent with no PMFs: b < 0.54
- Signs of internal inconsistency in ACT EE/TE data?
- SPT data lacks TT information , fits wellknown features in power spectrum
- Planck and SPT are consistent, ACT marginally

Consistency of Planck, ACT, SPT

- Data consistent with no PMFs: b < 0.54
- Signs of internal inconsistency in ACT EE/TE data?
- SPT data lacks TT information , fits wellknown features in power spectrum
- Planck and SPT are consistent, ACT marginally

		ΛCDM	$\Lambda \text{CDM} + b$
	Planck - SPT	12% (1.2σ)	6% (1.8σ)
-	Planck - ACT	0.5% (2.7σ)	1.5% (2.4σ)
	SPT - ACT	0.5% (2.7σ)	0.8% (2.6σ)

Early Dark Energy

Hints of Early Dark Energy in Planck, SPT, and ACT data: new physics or systematics? T. Smith, M. Lucca, V. Poulin, G. F. Abellan, L. Balkenhol, K. Benabed, S. Galli, R. Murgia, Submitted to PRD, arXiv:2202.09379

Image Credit: Millennium Simulation

Early Dark Energy

- Some component that behaves like dark energy at around matter-radiation equality
- Introduce three new model parameters:

$$z_c \quad f_{\rm EDE}(z_c) \quad \theta_i$$

- Shortens the sound horizon at recombination
- Momentum from Hill et al. 2021, Poulin et al. 2021, La Posta et al. 2021

Higher H₀ **inferred from CMB observations** oination et al.

Image Credit: ESA/Planck Mission

Early Dark Energy

- Some component that behaves like dark energy at around matter-radiation equality
- Introduce three new model parameters:

$$z_c \quad f_{\rm EDE}(z_c) \quad \theta_i$$

- Shortens the sound horizon at recombination
- Momentum from Hill et al. 2021, Poulin et al. 2021, La Posta et al. 2021

Higher H₀ **inferred from CMB observations** oination et al.

Image Credit: ESA/Planck Mission

Hint of EDE in Planck, SPT, and ACT Data

• All data sets show preference for EDE over ACDM:

Planck TT (I < 650) /TE/EE	2.2
+ SPT	2.4
+ ACT	3.3
+SPT + ACT	3.3

Smith et al. 2021, arXiv:2202.09379

Consistent EDE Signal Across Data Sets

- Same signatures of EDE in best-fit spectra for data sets
- Planck polarisation pulls SPT and ACT together
- Different mode of EDE than ACT-alone fit (Hill et al. 2021)

 $\Delta D_\ell^{\mathrm{TT}}$ -405 $\Delta D_\ell^{
m TE}$ -50.5 $\Delta D_\ell^{
m EE}$ 0.0

- Planck TT650TEEE + ACT-DR4 + SPT-3G
- --- Planck TT650 + ACT-DR4
- ---- Planck TT650TEEE + ACT-DR4

- --- Planck TT650 + SPT-3G
- Planck TT650TEEE + SPT-3G

Smith et al. 2021, arXiv:2202.09379

- Preference for EDE:
 - increases with relaxed gal. dust priors
 - decreases with alternative TE calibration
- Planck TT $\ell \gtrsim 1200$ kills EDE: Planck TT/TE/EE + ACT + SPT: 2.3σ c.f. La Posta et al. 2021
- Lensing and BAO mildly reduce preference from 3.3σ to $2.6-3.0\sigma$

Planck high & TT disfavours EDE

- Preference for EDE:
 - increases with relaxed gal. dust priors
 - decreases with alternative TE calibration
- Planck TT $\ell \gtrsim 1200$ kills EDE: Planck TT/TE/EE + ACT + SPT: 2.3σ c.f. La Posta et al. 2021
- Lensing and BAO mildly reduce preference from 3.3σ to $2.6-3.0\sigma$

Smith et al. 2021, arXiv:2202.09379

SPT-3G 2018 TT/TE/EE

Work in progress! SPT-3G collaboration, with crucial contributions from C. L. Reichardt, S. Galli, K. Benabed, N. Goekner-Wald, D. P. Dutcher

Image Credit: Aman Chokshi

TT/TE/EE Needed for ACDM+

- Need temperature and polarisation to tightly constrain ΛCDM extensions
- Cross-checks with other experiments at high signal-to-noise
- Use all available data

Add TT data to SPT-3G 2018 to learn about ΛCDM extensions and pave the way for future analyses

PMF, EDE, $N_{\rm eff}, \Sigma m_{\nu}, A_{I}, \ldots$

- Check null tests
- Produce 2018 band powers
- Check inter-frequency consistency
 - Minimum-variance contribution
 - Difference spectra
- Write likelihood code

Null-tests for TT 150GHz:					
(1)	Azimuth	37%			
(2)	Chronological	73%			
(3)	Scan-direction	59%			
(4)	Moon	57%			
(5)	Saturation	91%			
(6)	Wafer	72%			

- Check null tests
- Produce 2018 band powers
- Check inter-frequency consistency
 - Minimum-variance contribution
 - Difference spectra
- Write likelihood code

- Check null tests
- Produce 2018 band powers
- Check inter-frequency consistency
 - Minimum-variance contribution
 - Difference spectra
- Write likelihood code

- Check null tests
- Produce 2018 band powers
- Check inter-frequency consistency
 - Minimum-variance contribution
 - Difference spectra
- Write likelihood code

- Check null tests
- Produce 2018 band powers
- Check inter-frequency consistency
 - Minimum-variance contribution
 - Difference spectra
- Write likelihood code

subroutine likelihood(...): $-\ln L \propto \Delta D_b C_{bb'}^{-1} \Delta D_{b'} + \ln |C|$

end subroutine

Summary

- Use Planck, SPT, and ACT data to constrain PMF and EDE
- Independent probes and full primary power spectrum information crucial
- SPT-3G 2018 TT data is internally consistent cosmological results coming soon!

Image Credit: Aman Chokshi - Twitter/Instagram: aman_chokshi

Backup Slides

EDE - Planck high ell foregrounds

• Planck FG models at high ell similar - it really is the data driving EDE preference

Smith et al. 2021, arXiv:2202.09379

EDE: S₈ gets worse

- Planck 2018 TT/TE/EE+lensing ACDM:
 - $S_8 = 0.830 \pm 0.013$
- DES Y3:
 - $S_8 = 0.776 \pm 0.017$

ΛCDM	EDE
_	$0.163(0.179)^{+0.047}_{-0.04}$
_	$3.526(3.528)^{+0.028}_{-0.024}$
—	$2.784(2.806)^{+0.098}_{-0.093}$
_	$(4.38 \pm 0.49) imes 10^{-2}$
_	0.213 ± 0.035
$68.02(67.81)^{+0.64}_{-0.6}$	$74.2(74.83)^{+1.9}_{-2.1}$
$2.253(2.249)^{+0.014}_{-0.013}$	$2.279(2.278)^{+0.018}_{-0.02}$
$0.1186(0.1191)^{+0.0014}_{-0.0015}$	$\left 0.1356(0.1372) ^{+0.005}_{-0.005} ight $
$2.088(2.092)^{+0.035}_{-0.033}$	$2.145(2.146)^{+0.041}_{-0.04}$
$0.9764(0.9747)^{+0.0046}_{-0.0047}$	$1.001(1.003)^{+0.0091}_{-0.0096}$
$0.0510(0.0510)^{+0.0087}_{-0.0078}$	$0.0527(0.052)^{+0.0086}_{-0.0084}$
$0.817(0.821) \pm 0.017$	$0.829(0.829)^{+0.017}_{-0.019}$
$0.307(0.309)^{+0.008}_{-0.009}$	$0.289(0.287)\pm0.009$
$13.77(13.78)\pm0.023$	$12.84(12.75) \pm 0.27$
_	-16.2
_	99.9 $\%~(3.3\sigma)$
	$\begin{array}{r} \Lambda \text{CDM} \\ \hline \\ - \\ - \\ - \\ - \\ - \\ 68.02(67.81)^{+0.64}_{-0.6} \\ 2.253(2.249)^{+0.014}_{-0.013} \\ 0.1186(0.1191)^{+0.0014}_{-0.0015} \\ 2.088(2.092)^{+0.035}_{-0.033} \\ 0.9764(0.9747)^{+0.0046}_{-0.0047} \\ 0.0510(0.0510)^{+0.0087}_{-0.0078} \\ 0.817(0.821) \pm 0.017 \\ 0.307(0.309)^{+0.008}_{-0.009} \\ 13.77(13.78) \pm 0.023 \\ \hline \\ - \\ - \\ \end{array}$

SPT-3G 2018 TT/TE/EE - Difference Spectra

TT Frequency Difference Spectra

SPT-3G 2018 TT/TE/EE - Difference Spectra

TE Frequency Difference Spectra

SPT-3G 2018 TT/TE/EE - Difference Spectra

EE Frequency Difference Spectra

SPT-3G2018TT/TE/EE - Forecast

- ΛCDM :
 - 15% better n_s
 - 20% better $10^9 A_s e^{-2\tau}$
- $\Lambda CDM + N_{eff}$:
 - 50% better $N_{\rm eff}$ and H_0^*
- $\Lambda CDM + N_{eff} + Y_P$:
 - EE/TE fluctuates away from S.M. by 1.5σ

35

SPT-3G TT/TE/EE - Full Survey Forecast

Parameter Error	$\Omega_b h^2$	$\Omega_{c}h^{2}$	n _s	Ho	S 8
SPT-3G	0.00010	0.0017	0.0073	0.65	0.016
Planck	0.00020	0.0014	0.0044	0.60	0.016
SPT-3G + Planck	0.000090	0.0011	0.0032	0.45	0.0067*

* + lensing

