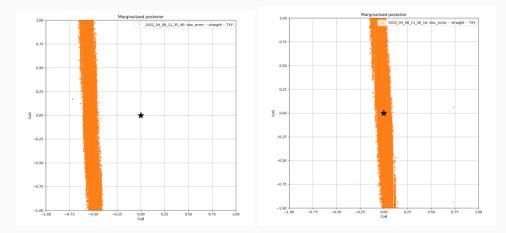
Preliminary results Discrete PDMP in BAT

Athina Monemvassitis

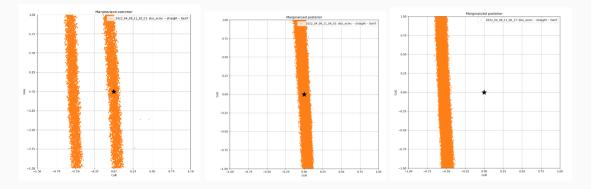
4, May 2022

athina.monemvassitis@uca.fr

Clermont

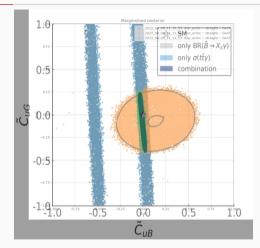


Minutes

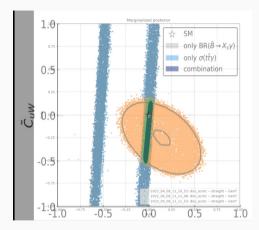

4, May 2022, online Zoom meeting

Sampling Cornelius' thesis distribution

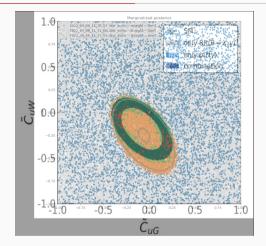
Sampling Cornelius' thesis distribution – XY Translations



CuB VS CuG, Two different runs with random initial conditions


CuB VS CuG, three different runs with $\langle \delta \rangle = 0.5, 0.05, 0.05$

Sampling Cornelius' thesis distribution – General Translations


CuB VS CuG, for $\langle \delta \rangle = 0.5$

Sampling Cornelius' thesis distribution – General Translations

CuB VS CuW for $\langle \delta \rangle = 0.5$

Sampling Cornelius' thesis distribution – General Translations

CuG VS CuW for $\langle \delta \rangle = 0.5$

- Apparently good agreement
 - Metodology for the selection of the points (90%)
 - Experimental data points from the paper for comparison
- (Lars and I?) Tuning the algorithm
 - Include it in the BAT software? (see next section)
 - Tune the step size analogously to the Metropolis sampler?
- (all?) Efficiency estimation
 - Done directly in BAT?
 - BAT tools include decorrelation calculations?
 - Definition of good observables / estimators hard to deorrelate
 - Discuss about this together with Manon?
 - \rightarrow Monday 9, May 2022 11h-12h
 - \rightarrow Monday 9, May 2022 12h-13h

Structure of the Discrete PDMP algorithm

Discrete PDMP for 1 new sample

```
Require: x \in \mathcal{X}, v \in \mathcal{V}, \delta > 0, number_steps > 0
Ensure: New sample v \in \mathcal{X}
   for step in number_step do
        x' = \text{propose}_{\text{move}}(x, v, \delta)
        p_{\rm acc} = \operatorname{get_pacc}(x, x')
        if pace then
             x \leftarrow x'
        else
             v = update_lift_variable(x, v, \delta)
        end if
```

end for

• Tunning parameters

- step size δ for acceptance rate
- number_steps between two samples for decorrelation
- Specified by the sampling scheme only
 - v (example in 2D) :
 - \rightarrow XY translations : $v \in \{(1,0), (0,1)\}$
 - \rightarrow General translations : $v \in \{\mathbb{S}_2\}$
- Specified by the sampling scheme or by the distribution
 - get_pacc
 - $\rightarrow \Delta E(x), \nabla E(x)$
 - propose_move
 - \rightarrow might depend on v
 - $\rightarrow\,$ might depend on the state space (periodic boundary conditions, ...)
 - update_lift_variable
 - $\rightarrow~$ depends on the chosen scheme through v
 - $\rightarrow \Delta E(x), \nabla E(x)$ for changes in v

Discrete PDMP - in Distribution file

procedure E((x))

Computation of the Energy function return Energy

end procedure

procedure $GRAD_E((x))$

Computation of the Gradient Energy function return Gradient Energy

end procedure

```
procedure PROPOSE_MOVE_SCHEME((x, v, \delta))
```

Implementation of the move according to _\$SCHEME

```
return a new position x'
```

end procedure

Discrete PDMP - in Distribution file

```
procedure GET_PACC((x, x'))
```

```
\# Implementation of the acceptance probability
   acc = False
   p = \min(1, \exp(-(E(x') - E(x))))
   if rand(0,1) < p then
      acc = True
   end if
   return acc
end procedure
procedure UPDATE_VARIABLE_SCHEME((x))
   # Updates v variable according to $SCHEME
   return v
end procedure
```

Dependence between chosen scheme and distribution

- Irreversible (what I used for Cornelius' distribution)
 - Possible to code it such that only the energy difference needs to be specified by the user
 - · Loss of the benefits of XY translations in the case of independ marginals

• Forward

• If added, needs in addition the gradient of the energy

Possibility – In Sampler file

- Implement all the possible propose_move functions for the possible schemes
- Implement all the possible update_variable functions for the possible schemes
- Implement get_pacc for energy difference in the case of XY translations or General translations (To get faster sampling in the case of independent marginals)
- \implies (for the user) Total energy difference, Total gradient energy

 \implies (for the user) Marginal energy difference, Marginal gradient energy in the case of independent marginals for the Forward XY translations scheme

- (Lars) Structure OK for the BAT software?
- Possibility to encode for easy use :

the user needs only to specify

- The scheme
 - $\rightarrow~$ XY translation or General translations
 - ightarrow Irreversible or forward updates (there are other that can be implemeted as easily)
- The tuning parameters if not tuned in BAT (δ , number of steps between two samples, number of steps between two refreshments)

as well as implementing

- The energy difference
- The gradient of the energy if scheme forward (or another to be implemented) selected
- Note : holds for the most of the distributions I can think about but not for spheres (I can develop if needed)