

Bi-weekly updates

Lars Röhrig

May the fourth be with you!

Department of Physics, TU Dortmund University Laboratoire de Physique, Clermont-Ferrand

Agenda

- 1. Event definition from the raw samples and jet clustering
- 2. Overlap removal for jets and the lepton
- 3. (Final?) W- and t-mass distributions
- 4. Outlook

UNIVERSITÉ Clermont Auvergne

Event definition from the raw samples and jet clustering

- So far: Using exclusive clustering to cluster objects up to $N_{"jets"} = 4$ (for semileptonic channel)
 - \rightarrow **But:** Didn't exclude the (highest energetic) lepton from clusterin
 - \rightarrow Could be that $N_{"ijets''} = N_{\ell} + N_{jets} \rightarrow$ Partly incorrect light jets matched from $W \rightarrow qq'$
- Now: using inclusive clustering with k₁-clustering algorithm with default settings (radius parameter R = 0.5, p_T-ordered jets, E-scheme)

 \rightarrow Results in a much wider $N_{\rm jets}$ distribution

- *b*-jet matching done with uniform distribution and p = 0.8
- Need for a overlap removal for misidentified jets, which have the same kinematics as the lepton

- Object definition to remove soft jets and overlap removal needed due to mismatched jets
- Different stages
 - **1.** Require the event to have $p_{\rm T}^{\rm jet} > 10.0 \, {\rm GeV}$

2.
$$\frac{|p_{\rm T}^{\rm jet} - p_{\rm T}^{\ell}|}{p_{\rm T}^{\rm jet}} > 1 \%$$

3. $\Delta \dot{R}(j, e) > 0.4$ and $\Delta R(j, \mu) > 0.2$

• Afterwards: Events with $N_{\rm jet} \neq 4$ and $N_{b-\rm jet} \neq 2$ are discarded

Requiring one lepton and overlap removal

- Requiring one lepton already removes events with the largest numbers of jets
- After OLR: Migration to 4 jets in the final state
- Could be, that in $N_{\text{jets}} = 4$, there are not always 2 *b*-tagged jets: With p = 0.8, having to *b* jets reduces ~ 13000 events to ~ 8000 events

Cutflow chain

1. Require the event to have exactly one lepton, so $N_\ell=1$

Overlap removal

Require the event to have $p_{T}^{\text{jet}} > 10.0 \text{ GeV}, \frac{|p_{T}^{\text{iet}} - p_{T}^{\ell}|}{v_{T}^{\text{jet}}} > 1\%, \Delta R(j, e) > 0.4 \text{ and } \Delta R(j, \mu) > 0.2$

- 2. Require the event to have exactly 4 jets, so $N_{\rm jets}=4$
- **3.** Require the event to have exactly 2 *b*-jets, so $N_{b-jets} = 2$

Clermon Auverane

- 500

-400

300

200

100

160 180 W_qq_m

100 120 140

80

W-boson reconstruction

- W bosons once in the leptonic $(W \to \ell \nu_{\ell})$ and in the hadronic $(W \to qq')$ channel
- No distinction between any flavor in the final state of the hadronic W boson

W-boson mass distribution

- W boson mass distribution for the different stages of event selection, normalised to unity
- Between $N_{\ell} = 1$ and $N_{\text{jets}} = 4$: OLR
 - \rightarrow Removing low $p_{\rm T}$ -jets reduces high- m_{qq} tail

Top-mass distribution

Similar trend in leptonic and hadronic top-quark distribution

Next?

- Compare distribution between reco-level and MC-truth
- Compute first observables out of the reconstructed objects ($A_{\rm FB}$ could be a good start)
- Idea from Emmanuel: put some requirements on subdetectors for top-quark measurements?