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Motivation

Two different geomagnetic models made
conflicting predictions for radio emission
(−→ Talk 34, T.Huege et al)

REAS describes radio emission by
geosynchrotron effect

Radiation due to the variation of the
number of charged particles in EAS was
not considered

All time-domain models miss this
radiation contribution so far

=⇒ The implementation of the
geosynchrotron model had to be revised
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General structure of REAS

Simulate EAS with CORSIKA → save information in
histograms

Generate shower particles according to the desired
distributions

Follow each particle analytically on its track in the
geomagnetic field (long trajectories are described by several
short tracks)

Superpose the radiation received from the shower particles at
a given observing position

3/19 Marianne.Ludwig@kit.edu REAS3 01.07.2010 Institut für Experimentelle Kernphysik, KIT Campus Nord



Technical implementation in REAS

REAS2

Continuous radiation
processes along the
tracks, not at the end or
the beginning of track

e−/e+ with v≈c before
and after being tracked
analytically in the B-field

REAS3

Straight track fragments joined by
“kinks”

Variation of ~v in kink: discrete
radiation process

e−/e+ with ~v=0 before and after
being tracked analytically ⇒ radiation
due to creation/annihilation is
considered
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Discrete calculations

Look at the time averaged process
(change of velocity is instantaneously)

Integrated field strength from
radiation formula

~v(t1) = ~v1 = ~β1c ; ~v(t2) = ~v2 = ~β2c

Radiation contribution in kink∫
~E (~x , t)dt =

∫ t2

t1

e

c

∣∣∣∣∣~n × [(~n − ~β)× ~̇β]

(1− ~β · ~n)3R

∣∣∣∣∣
ret

dt = ~F (t2)− ~F (t1)

=
e

cR

(
~n × (~n × ~β2)

(1− ~β2~n)

)
− e

cR

(
~n × (~n × ~β1)

(1− ~β1~n)

)

Refractive index set to unity

With discrete endpoint description several radiation processes
can be described
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Continuous vs. discrete calculation

Radio emission for track without endpoints (to verify the
implementation in REAS)
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REAS2.59
discrete calculation

Results are identical

Discrete description is
equivalent with
continuous description

In discrete picture
endpoints are kinks
with ~vi = 0 6= ~vj

Radiation contributions due to the variation of the number of
charged particles can be included canonical in the discrete
calculation
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Comparison of REAS2 and REAS3

Calculations were done for a vertical shower with Ep = 1017eV
in a horizontal magnetic field of 0.23 Gauss

Raw pulses for observers 100 m north and east of the shower
core at sea level
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Pulse shape with REAS3 bipolar

REAS3 emission pattern nearly azimuthal symmetric

Height of amplitudes changed
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Frequency spectra

Frequency spectra for observers 100 m north and east of the
shower core

Right plot: ∼ frequency range of experiments (43-76 MHz)
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Spectral field strengths drop to 0 for frequency 0

In general the spectra became flatter

REAS3 more symmetric than REAS2
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Lateral distribution

Lateral dependence of REAS2 and REAS3 with full bandwidth
amplitudes
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REAS3

In REAS3: east-west asymmetry

REAS3: for larger distances smaller field strengths

Azimuthal symmetry in REAS3 as expected
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Filtered pulses

For comparison with experimental data: filter simulations to a
finite observing bandwidth

Simulations were processed with a frequency filter from
43 MHz to 76 MHz (with REASPlot)

Pulses for observers 100 m north and east of shower core at
sea level
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Contour plots

Contour plots of the 60 MHz total field strength

Contour levels are 0.1µV/m/MHz

In contour plots general symmetry visible as well as east-west
asymmetry for REAS3

REAS2
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Contour plots for B=0 Gauss

Contour plots of the 60 MHz field strength (NS and EW
polarisation)
Contour levels are 0.03µV/m/MHz
Radiation pattern is radially polarised

⇒ Charge excess leads to non-geomagnetic contribution
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Charge excess vs. pure geomagnetic

Comparison of charge excess (CE) and pure geomagnetic
(gm) contribution for EW polarisation
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For filtered pulses influence
of CE around 10%

For lateral distance larger
than 400 m filtered signal is
not distinguishable from
noise

Radio signal is dominated by geomagnetic contributions in the
frequency range of experiments

For raw radio pulses CE is getting more important with lateral
distance
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Comparison with LOPES data

E = 2.75·1017eV, 24◦ zenith angle

proton shower
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Apel, W.D. et al. - LOPES coll., Astropart. Ph. 32 (2010) 294-303
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Comparison with LOPES data

E = 3.13·1017eV, 12◦ zenith angle

proton shower
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Noise treatment maybe changes slope of this event (⇒ Poster
of F. Schröder)
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Comparison with LOPES data

E = 2.92·1017eV, 31◦ zenith angle

proton shower
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Comparison with LOPES data

E = 9.65·1017eV, 29◦ zenith angle

proton shower
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Comparison with LOPES data

E = 2.88·1018eV, 58◦ zenith angle

proton shower
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Conclusion

Emission contributions due to the variation of the number of
charged particles in an EAS are included:

Pulse structure is bipolar
Azimuthal emission pattern nearly symmetric
Remaining asymmetry explainable by charge excess in EAS ⇒
radio emission not purely of geomagnetic origin
REAS3 in good agreement with LOPES data

REAS3 is the first self-consistent time-domain model which
takes the full complexity of EAS physics into account
(provided by CORSIKA)

REAS3 has no free paramters

Detailed paper has been submitted to Astroparticle Physics

⇒ Code will be freely available after publication
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