DIRECT COSMIC-RAY DETECTION

Antje Putze

Oskar Klein Centre for Cosmoparticle Physics, Stockholm

July 1, 2010

Cosmic-ray energy spectrum

Direct detection

Energy Range: $10^3 - 10^{15} \, \text{eV}$

Particles mostly absorbed in Earth's atmosphere

⇒ space- and balloon-borne experiments

Indirect detection

Energy Range: $10^{13} - 10^{22} \, \text{eV}$

low flux, but interaction in the atmosphere (atmospheric air showers)

⇒ ground-based experiments

Balloon-borne experiments

ARENA 2010

All started with Viktor Hess 1911/1912

Some major milestones

Auguste Piccard: First stratospheric balloon flight at \sim 16 km

[Les aventures de Tintin]

Antje Putze

OKC

3/30

All started with Viktor Hess 1911/1912

Marcel Schein: Cosmic rays are primarily protons

[Schein et al., Phys. Rev. 59 (1941), 615]

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection

3/30

All started with Viktor Hess 1911/1912

Some major milestones

Phyllis Freier: Evidence for heavy nuclei in primary cosmic rays

[Freier et al., Phys. Rev. 74 (1948), 1818]

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection

Sputnik 1: First satellite orbiting Earth

Antje Putze C

Direct cosmic-ray detection

All started with Viktor Hess 1911/1912

Some major milestones

Salyut 1: First space station

[3D Simulation]

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection 3/30

3/30

All started with Viktor Hess 1911/1912

First circumpolar LDB flights (1990: South Pole; 1997: North Pole)

[Gregory & Stepp, Adv. Sp. Res. 33 (2004), 1608]

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection

3/30

All started with Viktor Hess 1911/1912

First Super-Pressure Balloon (SPB) flight

[NASA]

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection

All started with Viktor Hess 1911/1912

Balloon- and space-borne experiments in this talk

Space-borne experiments:

- High Energy Astronomy Observatory 3 (HEAO 3);
- Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics (PAMELA);
- Alpha-Magnetic Spectrometer (AMS).

Balloon-borne experiments:

- Advanced Thin Ionization Calorimeter (ATIC);
- Trans-Iron Galactic Element Recorder (TIGER);
- Cosmic-Ray Mass And Energetics (CREAM).

ARENA 2010

Scientific challenges

Heliosphere (artistic view)

[NASA]

Solar Physics

Solar modulation of CRs, solar energetic particles, solar cosmic rays, Jovian electrons

Cosmic ray sources and acceleration nearby sources (e^+) , source abundances (FIP vs. volatility)

Cosmic-ray propagation

propagation mechanisms (elemental spectra, secondary-to-primary ratios)

Dark matter

Annihilation $(e^{\pm}, p\bar{p})$

Antimatter
Baryonic asymmetry (Z < -2)

Introduction

Cassopeia A (Chandra, X-rays)

[NASA/CXC/MIT/UMass Amherst/M.D.Stage et al.]

Solar Physics

Solar modulation of CRs, solar energetic particles, solar cosmic rays, Jovian electrons

Cosmic ray sources and acceleration

nearby sources (e^+) , source abundances (FIP vs. volatility)

Cosmic-ray propagation

propagation mechanisms (elemental spectra, secondary-to-primary ratios)

Dark matte

Annihilation $(e^{\pm}, p\bar{p})$

Baryonic asymmetry (Z < -2

ARENA 2010

Antje Putze

OKC

Direct cosmic-ray detection

Scientific challenges

Solar Physics

Solar modulation of CRs, solar energetic particles, solar cosmic rays, Jovian electrons

Cosmic ray sources and acceleration

nearby sources (e^+) , source abundances (FIP vs. volatility)

Cosmic-ray propagation

propagation mechanisms (elemental spectra, secondary-to-primary ratios)

Dark matte

Annihilation (e^{\pm} , $p\bar{p}$

Baryonic asymmetry (Z < -2)

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection 4/30

Introduction

Bullet Cluster (Chandra, Hubble)

Solar Physics

Solar modulation of CRs, solar energetic particles, solar cosmic rays, Jovian electrons

Cosmic ray sources and acceleration

nearby sources (e^+) , source abundances (FIP vs. volatility)

Cosmic-ray propagation

propagation mechanisms (elemental spectra, secondary-to-primary ratios)

Dark matter

Annihilation $(e^{\pm}, p\bar{p})$

Antimatter

Baryonic asymmetry (Z < -2)

ARENA 2010

Antje Putze

OKC

Direct cosmic-ray detection

Introduction

Solar Physics

Solar modulation of CRs, solar energetic particles, solar cosmic rays, Jovian electrons

Cosmic ray sources and acceleration

nearby sources (e^+) , source abundances (FIP vs. volatility)

Cosmic-ray propagation

propagation mechanisms (elemental spectra, secondary-to-primary ratios)

Dark matter

Annihilation $(e^{\pm}, p\bar{p})$

Antimatter

Baryonic asymmetry (Z < -2)

Measurement techniques: Energy

Calorimeter Metal Slabs Particle Path

hadronic and electromagnetic;

Shower of Particles

- particle shower production using dense material;
- energy measurement through scintillation.

Transition radiation

Balloon-borne experiments

- threshold and precision;
- \bullet γ 's produced during passage between materials with differing dielectric constants;
- $W_0 \propto \gamma$ (Lorenz factor);
- energy measurement through ionisation.

ARENA 2010

Measurement techniques: Charge

Cherenkov

Introduction

- γ 's produced during the passage through a radiator;
- $N_{\gamma} \propto Z^2$;
- $\theta = \cos^{-1}(1/\beta n)$.

dE/dx - Energy losses

- silicon diodes and plastic scintillators:
- ionisation of the material;
- $-dE/dx \propto Z^2$.

A combination of different types or multiple detectors of the same type allows to infer also other particle characteristics!

ARENA 2010

7/30

High Energy Astronomy Observatory 3 (HEAO 3)

Lifetime

20 September 1979 - 29 May 1981

Instruments

- High Resolution Gamma Ray Spectrometer (HRGRS / C1);
- Cosmic Ray Isotope Experiment (C2);
- Heavy Nuclei Experiment (C3).

Mission of C2

Measurement of elemental spectra and abundances from beryllium to nickel between 0.6 and 35 GeV/n

ARENA 2010 Antie Putze OKC Direct cosmic-ray detection

HEAO 3 (C2) - Cosmic Ray Isotope Experiment

- 5 Cherenkov counters with different refractive index used for velocity and charge determination:
- Flash-tube hodoscope of 4 trays used for particle track reconstruction;
- effective area of 0.07 m² for each propagation direction;
- over 7 million events collected of particles with $4 \le Z \le 28$ between 0.6 and $35 \,\text{GeV/n}$.

ARENA 2010

HEAO 3-C2 results [Engelmann et al., A&A 233 (1990), 96]

Most precise mesurements of cosmic rays $(4 \le Z \le 28)!$

ARENA 2010

Antje Putze

Payload for Antimatter Matter Exploration and Light-nuclei Astrophysics

Lifetime

15 June 2006 - 2010/2011

Balloon-borne experiments

Scientific goals

- search for evidence of annihilations of dark matter (p
 and e⁺ spectra)
- search for antinuclei;
- test propagation models;
- study of solar physics and solar modulation;
- study of possible contribution from local sources to the electron spectrum.

ARENA 2010

Antje Putze

OKC

Direct cosmic-ray detection

PAMELA detector

geometrical acceptance of 0.22 m² sr

Time-Of-Flight (TOF)

- 3 plastic scintillators
- \bullet β and |Z| measurement

Spectrometer

- permanent magnet and 6 layers of silicon microstrips
- R and Z measurement

Electromagnetic calorimeter

- W/Si sampling
- E measurement and shower topology

ARENA 2010

12/30

PAMELA results

Data analysis still ongoing: new results will be published soon! Stay tuned!

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection

Alpha Magnetic Spectrometer - 01

Lifetime

2 - 12 June 1998 on the space shuttle *Discovery*

Scientific goals

- search for evidence of annihilations of dark matter (\bar{p} and e^+ spectra)
- search for antinuclei;
- test propagation models;
- study of solar physics and solar modulation;
- study of possible contribution from local sources to the electron spectrum.

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection 13/30

AMS-01

geometrical acceptance of 0,82 m² sr

Time-Of-Flight (TOF)

- 2 plastic scintillators
- ullet β and |Z| measurement

Spectrometer

- permanent magnet and 6 layers of silicon microstrip
- R and Z measurement

Cherenkov counter

- Cherenkov imager with aerogel radiator
- \bullet β and |Z| measurement

ARENA 2010

AMS-01 results

Electron flux

[AMS Collaboration, Physics Reports 366 (2002), 331]

AMS-02 launch scheduled for november 2010!

ARENA 2010

Antje Putze

OKC

Direct cosmic-ray detection

16/30

Advanced Thin Ionization Calorimeter

[ATIC homepage]

3 LDB flights (2000, 2002 & 2007), 50 days

Scientific goals

- measure spectra for individual elements;
- discover "breaks" or "bends" in the spectra;
- measure the H/He ratio;
- determine the spectral differences between elements;
- study the composition of the cosmic-ray matter.

ARENA 2010 Antje Putze OKC Direct cosmic-ray detection

ATIC detector

geometrical acceptance of $0.075 - 0.15 \, \mathrm{m}^2 \, \mathrm{sr}$

Silicon Matrix

- silicon microstrip
- Z measurement

Hodoscopes

- 3 plastic scintillators
- Z and trajectory measurement

Ionisation calorimeter

- 3 layers of carbon and 10 layers of BGO crystals
- E measurement

ARENA 2010

ATIC results

Inclusive spectrum of ATIC-2

[Panov et al., Bulletin of the Russian Academy of

Sciences: Physics, **73** (2009), 564]

ARENA 2010

Antje Putze

OKC

Direct cosmic-ray detection

Trans-Iron Galactic Element Recorder

2 LDB flights (2001 & 2003), 50 days

Scientific goals

- measuring the abundances of particles with $26 \le Z \le 38$;
- study acceleration mechanisms;
- identify sources;

Balloon-borne experiments

00000000000

ARENA 2010

Introduction

TIGER detector

geometrical acceptance of 1.7 m² sr

Scintillators

- 4 layers plastic scintillators
- E and Z measurement

Cherenkov counters

- 2 (acrylic & aerogel)
 Cherenkov radiators
- ullet β and Z measurement

Hodoscopes

- 2 scintillating fiber hodoscopes
- trajectory measurement

ARENA 2010

TIGER results

Relative abundances (SS + MSO)

Super-TIGER (4 TIGER modules) flights are planned for 2012 and 2014

ARENA 2010

Antie Putze

OKC

Direct cosmic-ray detection

Cosmic Ray Energetics And Mass

CREAM flight duration exceeds all prior balloon-borne experiments!

5 LDB flights (2004, 2006–2009), 157 days 6th and 7th flight in preparation

Scientific goals

- measure spectra for individual elements;
- discover "breaks" or "bends" in the spectra;
- determine the spectral differences between elements;
- study the composition of the cosmic-ray matter.

ARENA 2010

Introduction

CREAM sub-detectors

CREAM-I/II sub-detectors

- Timing Charge Detector (TCD):
 Z, vetoes albedo particles
- Transition Radiation Detector (TRD) (only CREAM-I):
- Cherenkov Detector (CD):
 Z, vetoes non-relativistic particles
- Silicon Charge Detector (SCD): 7
- ionisation calorimeter:

CREAM sub-detectors

CREAM-III/IV/V sub-detectors

- Timing Charge Detector (TCD):
 Z, vetoes albedo particles
- Cherenkov Detector (CD):
 Z, vetoes non-relativistic particles
- Cherenkov Camera (CherCam):Z
- Silicon Charge Detector (SCD): Z
- ionisation calorimeter:E

CREAM-I B/C and N/O ratios

[H. S. Ahn et al., Astropart. Phys. 30 (2008), 133]

ARENA 2010

Antje Putze

OKC

Direct cosmic-ray detection

ARENA 2010

Balloon-borne experiments 00000000000

CREAM-II spectral indices (single power-law fit)

Very similar spectral indices! Average spectral index $\bar{\gamma} = 2.66 \pm 0.04$

ARENA 2010

Antje Putze

Link between direct and indirect detection

Indirect detection

- detection of secondary particles (air showers);
- estimation of primary particle properties based on hadronic model.

Direct detection can

- measure precisely the elemental fluxes at energies up to the knee:
- calibrate indirect experiments.

Conclusion

Direct cosmic-ray detection with space- and balloon-borne experiments

- small background due to secondary particles;
- identification of particle properties (mass, energy, charge);
- large acceptance and long exposure time, but limited through weight and cost;
- addresses a great number of cosmic-ray physics.

Detectors

- complex and diverse;
- precision measurements of spectra and abundances on-going;
- extending measurements until energies of indirect detection experiments.

Exciting times! New results coming in the next months...

Outlook - AMS02

Modified AMS01 spectrometer

- TRD added:
- Cherenkov counter replaced by Cherenkov imager;
- electromagnetic calorimeter added;
- 3 additional silicon tracker layers.

[AMS homepage]

