Recent results form the RICE experiment at the South Pole

Ilya Kravchenko

(University of Nebraska-Lincoln)

for RICE/NARC collaboration

Talk outline

Part 1:

New results from RICE on neutrino flux

Part 2:

Ice studies from RICE/NARC in preparation for ARA

Part 3:

Environmental studies from RICE/NARC for RASTA

Nomenclature: RICE

In-ice array of radio antennas 123

- 20 channels, 200-500 MHz
- Depths 100-300 meters
- Signal digitized at the surface

- Sensitivity to $E_v \sim 10^{17}-10^{20} \text{ eV}$
- Running since 1996/1997
- Detect neutrinos via coherent radio emission

Nomenclature: NARC

- Extension of original RICE
- 20 new in-ice channels
 - Attached to IceCube cables
 - Digitization in-ice
 - See H. Landsman's talk
 - Prelude to ARA, (K. Hoffman's talk)
- 4 new surface channels
 - Connected to RICE DAQ
 - Prelude to RASTA (S. Boeser's talk)

Part 1: new results on neutrino flux

Event rate vs flux

$$N = V_{eff}(E) \, \sigma_{vN}(E) \, n \, \Phi \, \varepsilon \, L \, \Omega$$

- N event count
- V effective volume
- 。 σ neutrino-nucleon cross-section
- n target density (nucleons per m³)
- Φ neutrino flux (particles per GeV m² s sr)
- ε efficiency to reconstruct an event
- L livetime in seconds
- $_{\circ}$ Ω solid angle in steradians

Event definition and reconstruction

- An event: coincidence of a "hit" on ≥4 antennas within 1.25us
- Event source: reconstruct vertex from relative times of the hits

Vertex reconstruction: grid method or analytic

solution method

Event selection

- Accumulated 1.78M events on disk
- Select events and reject backgrounds by:
 - Good source vertex: cut on time residuals
 - Consistency of 2 vertex finding algorithms
 - Time over threshold
 - Reconstructed source Z below 150 meters
 - Double pulse rejection

Zero surviving candidates

• upper limit 2.3 events @ 90% C.L.

Effective volume

- Estimated from simulation
- Similar to used in last publication: V_{eff}(2000-2005) ≈ V_{eff}(2006-2010)
- Uneven: 2006 compromised by installation of 450 MHz Land Mobile Radio system at the Pole
- MC updated to include a better shower parameterization

Other event rate pieces

- Livetime: ~1700 days
 - Surface Veto board -> 7% livetime improvement
 - $-L_{2000-2010} \sim 2.05 \times L_{2000-2005}$
- Efficiency to pass selection:
 - $-71.4 \pm 1.0\%$ from MC
 - note: trigger efficiency is folded into V_{eff}
- Solid angle: $\sim 2\pi$

Upper limit on neutrino flux

RICE 2010 limits are ×2 better than RICE 2006

Upper limit on neutrino flux

Part 2: ice studies for ARA

Needed for ARA: full characterization of complex permittivity at all polarizations for propagation in both Z and phi.

Known:

- -<L_{atten}> \sim 600m for radar propagation along Z
- Index of refraction within 0.5-1.0%
- Birefringence indications: 0.3% in the upper 1.5km of ice at Dome Fuji

Jan 2010 studies: birefringence

Direct time-domain measurement:

 Broadcast ns-duration pulses with surface horn antenna Tx broadcasting down through ice sheet and reflecting back up to receiver Rx

Birefringence results

Time shift => birefringence

Time, ns

- Average ($\Delta c/c$) = 0.3% (time shift 53 ns)
- Echoes to 1.5km are in sync, effect only in lower half of ice-sheet

Other ice studies from Jan 2010

Dispersive effects:

- Diff. frequency components for bedrock reflection simultaneous within 4ns
- Limits dispersion to <10⁻⁴ for 100-1000 MHz
- Estimation of bedrock depth via roundtrip time
 - Measured 2857 ± 5m ± 30 m
 - Systematics from uncertainty of n(Z)
 - NO existing long-baseline radio transit measurements between known source/receiver locations
 - ARA will reduce this systematics by x5

Implications for ARA

- No dispersion over long baselines (good!)
- Birefringence limited to lower portion of ice sheet (higher RF attenuation, anyway)
- A side note: ARA will be an instrument for forefront radioglaciology, as well as Astroparticle Physics!

Part 3: surface environmental studies

- RASTA strives to measure radio emission from air showers (see talk by S. Boeser)
- With NARC Jan 2009 present studied the environment at the Pole:
 - 4 surface antennas from Wuppertal added to RICE
 - Similar to RICE dipoles, but x10 in scale
- Investigated:
 - Reconstruction of surface pinger
 - Calibration of frequency response to galaxy
 - Identification of background sources

Reconstruction of known source

Find pinger position in xy:

Frequency response to galaxy

V_{rms} for unbiased triggers: note V(t) variation vs. second – sine wave advances with time=> inconsistent with Solar source; phase consistent with SgrA* source at "infinity"

Identification of backgrounds

 ICL building is the dominant source of background to surface triggers

Summary

- New RICE neutrino flux limits derived
 - About x2 better then previously published RICE
- Several studies done last year are useful for ARA R&D
- Recent measurements with surface channels are relevant for RASTA planning