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Extensive air shower physics

EAS development < high energy interactions

» backbone - hadron cascade

» guided by few interactions of initial (fastest secondary) particle
= main source of fluctuations

» many sub-cascades of secondaries = well averaged

Most sensitive to hadronic physics:

» shower maximum position Xmay
. e inel non—diffr inel
- mainly sensitive to Op i (prair ), Kp_air
» number of muons at ground N,
- mainly depends on N . (at energies ~ /Eo)
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. shower size Ne
Experimental observables |
- mostly from e/m cascades

> charged particle densities
at ground

- (w/°3)u) » X

» fluorescence radiation

» Cherenkov radiation

> radio emission

Also muon component:

6km zenith angle of 40 deg.

» mostly from decays of 7%, K*, K|
produced in the hadronic cascade

» plus "equilibrium’ component from photon-nuclear interactions
(~ 15% of Npy,, mostly below 1 GeV)
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Superposition model

For average characteristics: nucleus A induced shower of energy Eg
can be replaced by A proton-induced cascades of energy Eq/A

» follows from the number of interacting nucleons per collision:

Ao, 4
<VA> — p—air
OA—air

v

mean free pass of the nucleus is (Gp—air/Ca—air) times shorter

v

but each nucleon interacts with the probability

<VA> Gp—air
A Oa-air
= (Xfax(E0)) = (Xiax(Eo/A)) = (Xiax(Eo)) —ER In A,
ER= d(X,ﬁaX(Eo»/dln EO
= can be used for CR composition studies
similarly: (NZ, (Eo)) = A(NZ ) (Eo/A)) ~ Ey " A%

Wint =

v

v

v
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Direct simulation of air showers

Most transparent - direct EAS simulation (e.g. CORSIKA program)

> very time-costy = impractical at very high energies
> to speed up - weighted sampling (Hillas's "thinning’):
choose only 1 secondary to track - with a probability #,(E)
particle aquires a weight wy,(E) =1/fn(E)
(represents a bunch of particles of the same energy)
appropriate for average EAS characteristics
creates artificial fluctuations for EAS observables

> to restrict artificial fluctuations - impose weight restrictions
(Kobal et al.): stop the 'thinning’ at wi, ~ Wmax

> to obtain realistic particle distributions in phase space -
'unthining’ (Billiore): collect particles from a wider bin
(e.g. from a large area around the detector);
W/(E) = Wth(E) Sdet/ssample
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Numerical and hybrid approaches

Fluctuations of EAS observables - 2 sources:

» fluctuations of EAS development:

free pass of the primary hadron Xo ~ 4, = my;;/oj™l

(X = Jiy dh’ paic(H), [g/cm?])
"inelasticity’ of the 1st interaction
multiplicity Ncn of the 1st interaction
same for the most energetic secondaries

> measurement systematics:

finite detector size
finite resolution, etc.

= to correctly catch EAS fluctuations MC treatment of the
beginning of the shower (E > E2" ~ 1072. £y) is sufficient
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Hybrid approaches

For certain observables (e.g., Fluorescence & air cherenkov
measurements) 1-dimensional EAS treatment is sufficient

» = 'hybrid 1" type procedure (MC @& NUM) - CONEX program:

MC treatment of hadronic cascade at E > Ehlgh

numerical treatment of hadronic and e/m cascades at £ < E'¢"
output: profiles of hadrons, muons, electrons (positrons) &

photons as function of depth

General case - "hybrid 2' type procedure (MC @ NUM @& MC):

MC treatment of hadronic cascade at E > Ehlgh

numerical treatment of hadronic and e/m cascades at
Elov < E < ENE"
MC treatment of hadronic and e/m cascades at E < Elo%
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What is the suitable choice for E/® to change back to MC?
» e/m cascade: particle production angles - negligible
» but Coloumb scattering (mainly, multiple scattering):
scattering angle squared per radiation unit (37 g/cm? in air):
(%) ~ E2/E?, Eg=21MeV
thus, 1D-treatment could be appropriate above 1 GeV

but: 7% which decays into gammas has non-zero p;!

» typical p; of secondaries in hadronic interactions < 1 GeV
» energies of secondary hadrons < Ey =
n (pe) _ (pt) _ 6

i+1 ™~ . T T v
Eyv  xn Ef Xn

> 6;

= only last generation is important
» suitable choice: EY =10 TeV
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Numerical method (CONEX)

Hadronic cascade equation:

Iho(EX)  h(EX) dLjdX 9 .
X = a0 MEX) et g B (E) (B X))
Emax W, _.(E',E) dL/dX
dE' hg(E', X) | === =) 4 Dy .(E' E S,
X, AEX | ey TP E R eyt

- solved numerically, discretizing particle energy E and depth X

E/m cascades - similarly (without decays):

ILEX)  HEX) 9

S =~ e 3 BENHEX)

Emax , W'Hi E/,E
J

Technical difference - change to linear combinations of particle
states (e™, e, 7) to diagonalize the equation system in depth bins
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Puzzles & contradictions

EAS - just an instrument to study CRs

» = air shower simulations - a part of the instrument

What do we expect from a "good’ instrument?

> allows to measure a quantity A

» with an accuracy B

» if the measurement was performed correctly
- following the instruction C

Cosimic ray studies:

» A= {primary energy, CR composition, arrival direction}
» C - main subject of experimental EAS techniques
» B - always properly estimated by each single experiment

(but disagreement with another experiment > ,/B? + B7)
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Puzzles & contradictions in EAS simulations

Shower simulations - an external ingredient for an exper. analysis

» = source of doubt: is C is a correct way to measure A?

» how to estimate the related uncertainty (B’)?

Do we have reasons to believe present EAS simulations are wrong?
» no serious doubts concerning the treatment of e/m cascades
» always serious doubts about hadronic cascades:

involve phenomenological interaction models
model parameters tuned with restricted sets of data

models can never be proved correct, at best - not yet wrong

Are present models of hadronic interactions already wrong?
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Puzzles & contradictions related to hadronic interactions

Cosmic ray composition studies:

» most sensitive to predictions of hadronic interaction models

» = least certain results

Two biggest puzzles:

» EAS muon content

» shower elongation rate & RMS of Xqax



EAS muon puzzle

Old HiRes-Mia result: more muons than predicted by similations

> not suppoted by AGASA:
Pu(600 m) ~ pu(p / QGSJET)

1

) (%)

[ (600m!

0.1

B=0.73

+ 0.03% (0.02)

sys.

QGSJet Iron
- QGSJet Proton

1
E (10%%ev)

= SIBYLL, Proton
v sevLL. Iron

10 107
S(600) (M)
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EAS muon puzzle & Auger data

Pierre Auger collaboration - models underestimate p,, by 50%:

" GaEIET (Faron
" CHISJET

&7 LHE: o8 1 1.1 1.2 13 1.4

» higher multiplicity in p — air (7 — air) collisions?
» enhanced production of (anti-)baryons?
(Grieder 1973, Pierog & Werner 2007)
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RMS of Xmnax - model-independent quantity (Aloisio et al. 2008)

. T
» proton-induced EAS: 2 0L
yf
mean free pass A,: S |
p_ inel [
ACy = Ap ~ 1/6,,7air ol
(~50 g/cm?) i

geometry of p —air collisions: o [ e

-small b = Iarge Kinel: Nch r

_ |arge b :> sma” Kinel, Nch 0 L ‘HH!OB‘ uuulw\ogw ‘ml‘(‘)lo‘ wmiwou

E, GeV

» A-induced EAS: superposition model (6§ = 0% /v/A) - invalid
(Kalmykov & SO 1989, 1993)
collision geometry dominates: fluctuations of multiplicity
(on,, /Nech ~ 1) and N of 'wounded’ nucleons = Kipel
fragmentation of nuclear spectator part - factor of 2 difference for
G)‘(‘mx between extreme assumptions
still much smaller fluctuations than for p-induced showers
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Pierre Auger data - strong contradiction between Xmax & Ox__ :
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» hadronic interactions:
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(figures from Wilk & Wlodarszik-2010)
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Input from the LHC

First LHC data on the multiplicity in pp-collisions:
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no indication for higher Ny
than predicted by models!

alternative mechanism for high N,
- hard forward spectra of mesons?
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Input from the LHC

First LHC data on the multiplicity in pp-collisions:
0 F

dN,/dn

» no indication for higher N 7  QGSETIMS
than predicted by models! - ——  SBYLL21
> alternative mechanism for high N,
- hard forward spectra of mesons?
» yet no indication in the LHCf data
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Conclusions

EAS simulations - considerable progress over the last two decades

» standard EAS simulation packages are wide-spread in the field,
compared to various measurements

> unlike 20 years ago, good overall description of EAS data

» wide range of applications: 'standard’ EAS techniques,
fluorescence, Cherenkov & radio emission

New efficient approaches to EAS simulation - hybrid’ procedures:
combination of MC & numerical techniques

Still puzzles in CR composition studies - related to hadronic models

» muon puzzle - no indication that models are wrong from LHC

» Xmax puzzle - crucial LHC measurement (G,g‘;,‘) ahead



