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Extensive air shower physics

EAS development ⇐ high energy interactions

I backbone - hadron cascade

I guided by few interactions of initial (fastest secondary) particle
⇒ main source of �uctuations

I many sub-cascades of secondaries ⇒ well averaged

Most sensitive to hadronic physics:

I shower maximum position Xmax
- mainly sensitive to σ inel

p−air (σ
non−diffr
p−air ), K inel

p−air

I number of muons at ground Nµ

- mainly depends on Nch
π−air (at energies ∼

√
E0)
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Detetion: extensive air showers (EAS)
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(Pryke, Auger Projet)� partiles: , e and �� about 7 � 1010 harged partiles at Xmax in EAS withE0 = 1020 eV

Experimental observables
- mostly from e/m cascades

I charged particle densities
at ground

I �uorescence radiation

I Cherenkov radiation

I radio emission

Also muon component:

I mostly from decays of π±, K±, KL

produced in the hadronic cascade

I plus 'equilibrium' component from photon-nuclear interactions
(∼ 15% of Nmu, mostly below 1 GeV)
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Superposition model

For average characteristics: nucleus A induced shower of energy E0
can be replaced by A proton-induced cascades of energy E0/A

I follows from the number of interacting nucleons per collision:

〈νA〉=
Aσp−air

σA−air

I mean free pass of the nucleus is (σp−air/σA−air) times shorter

I but each nucleon interacts with the probability

wint =
〈νA〉
A

=
σp−air

σA−air

I ⇒ 〈XA
max(E0)〉= 〈X p

max(E0/A)〉= 〈X p
max(E0)〉−ER lnA,

ER= d〈X p
max(E0)〉/d lnE0

I ⇒ can be used for CR composition studies

I similarly: 〈NA
e(µ)(E0)〉= A〈Np

e(µ)(E0/A)〉 ∼ E
α
e(µ)

0
A1−α

e(µ)
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Direct simulation of air showers

Most transparent - direct EAS simulation (e.g. CORSIKA program)

I very time-costy ⇒ impractical at very high energies

I to speed up - weighted sampling (Hillas's 'thinning'):

choose only 1 secondary to track - with a probability fth(E )
particle aquires a weight wth(E ) = 1/fth(E )

(represents a bunch of particles of the same energy)

appropriate for average EAS characteristics

creates arti�cial �uctuations for EAS observables

I to restrict arti�cial �uctuations - impose weight restrictions
(Kobal et al.): stop the 'thinning' at wth ∼ wmax

I to obtain realistic particle distributions in phase space -
'unthining' (Billiore): collect particles from a wider bin
(e.g. from a large area around the detector);
w ′(E ) = wth(E ) Sdet/Ssample
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Numerical and hybrid approaches

Fluctuations of EAS observables - 2 sources:

I �uctuations of EAS development:

free pass of the primary hadron X0 ∼ λa =mair/σ inel
h−air

(X =
∫

∞

h dh
′ ρair(h′), [g/cm2])

'inelasticity' of the 1st interaction

multiplicity Nch of the 1st interaction

same for the most energetic secondaries

I measurement systematics:

�nite detector size

�nite resolution, etc.

⇒ to correctly catch EAS �uctuations MC treatment of the
beginning of the shower (E > E

high
thr ∼ 10−2 ·E0) is su�cient
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Hybrid approaches

For certain observables (e.g., Fluorescence & air cherenkov
measurements) 1-dimensional EAS treatment is su�cient

I ⇒ 'hybrid 1' type procedure (MC⊕NUM) - CONEX program:

MC treatment of hadronic cascade at E > E
high
thr

numerical treatment of hadronic and e/m cascades at E < E
high
thr

output: pro�les of hadrons, muons, electrons (positrons) &
photons as function of depth

General case - 'hybrid 2' type procedure (MC⊕NUM⊕MC):

MC treatment of hadronic cascade at E > E
high
thr

numerical treatment of hadronic and e/m cascades at

E low
thr < E < E

high
thr

MC treatment of hadronic and e/m cascades at E < E low
thr
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What is the suitable choice for E low
thr to change back to MC?

I e/m cascade: particle production angles - negligible

I but Coloumb scattering (mainly, multiple scattering):

scattering angle squared per radiation unit (37 g/cm2 in air):

〈θ2〉 ∼ E 2

s /E 2, Es = 21 MeV

thus, 1D-treatment could be appropriate above 1 GeV

but: π0 which decays into gammas has non-zero pt !

I typical pt of secondaries in hadronic interactions < 1 GeV

I energies of secondary hadrons � E0 ⇒

θ
π
i+1 ∼

〈pt〉
Eπ
i+1

=
〈pt〉
xπ E

π
i

=
θi

xπ

� θi

⇒ only last generation is important

I suitable choice: E low
thr = 10 TeV
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Numerical method (CONEX)

Hadronic cascade equation:

∂ha(E ,X )
∂X

=−ha(E ,X )
λa(X )

−ha(E ,X )
dL/dX

c τa(E )
+

∂

∂E

[
β

ion
a (E )ha(E ,X )

]
+∑

d

∫ Emax

E
dE ′ hd (E ′,X )

[
Wd→a(E ′,E )

λd (E ′)
+Dd→a(E ′,E )

dL/dX

c τd (E ′)

]
+Sa

- solved numerically, discretizing particle energy E and depth X

E/m cascades - similarly (without decays):

∂ li (E ,X )
∂X

=− li (E ,X )
λi (X )

+
∂

∂E

[
β

ion
a (E ) li (E ,X )

]
+∑

j

∫ Emax

E
dE ′ lj(E ′,X )

Wj→i (E ′,E )
λj(E ′)

+Si (E ,X )

Technical di�erence - change to linear combinations of particle
states (e+, e−, γ) to diagonalize the equation system in depth bins
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Puzzles & contradictions

EAS - just an instrument to study CRs

I ⇒ air shower simulations - a part of the instrument

What do we expect from a 'good' instrument?

I allows to measure a quantity A
I with an accuracy B
I if the measurement was performed correctly

- following the instruction C

Cosimic ray studies:

I A= {primary energy, CR composition, arrival direction}
I C - main subject of experimental EAS techniques
I B - always properly estimated by each single experiment

(but disagreement with another experiment >
√
B2

1
+B2

2
)
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Puzzles & contradictions in EAS simulations

Shower simulations - an external ingredient for an exper. analysis

I ⇒ source of doubt: is C is a correct way to measure A?

I how to estimate the related uncertainty (B ′)?

Do we have reasons to believe present EAS simulations are wrong?

I no serious doubts concerning the treatment of e/m cascades

I always serious doubts about hadronic cascades:

involve phenomenological interaction models

model parameters tuned with restricted sets of data

models can never be proved correct, at best - not yet wrong

Are present models of hadronic interactions already wrong?
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EAS muon puzzle

Old HiRes-Mia result: more muons than predicted by similations

Cosmi ray omposition using muons
� hadrons (superposition model):hN�i = A N0 � (E=A)� ; � � 0:87� photons: muon-poor showers (E < 1018eV)however: situation unlear at higher energies� HiRes-MIA data:
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β = 0.73      0.03       (0.02)

) more muons than in any QCD-based model
I not suppoted by AGASA:

ρµ(600 m) ∼ ρµ(p / QGSJET)
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SIBYLL, Proton

SIBYLL, IronFig. 12. Comparison of experimental �� vs S0(600) or �h relation with that from COR-SIKA simulation.energies of 2 GeV is expeted to be smaller than that at Akeno of 1 GeV abouta fator 1:2 � 1:5 [37℄. Therefore suh an agreement of the extrapolation of theabsolute values from both experiments is well understood. The important result,however, is the agreement of the slopes of the N� vs. Ne relation of both experimentsin quite di�erent energy regions.Sine in the higher energy region, Ne an not be determined by AGASA, the ��(600)vs. S0(600) relation is used. The result at se � = 1:09 [26℄ is expressed as��(600) = (0:16� 0:01) � S0(600)0:82�0:03: (18)Taking into aount the relation S0(600) / E0 / N0:9e , the above equation oinideswith Eq. 17 in the overlapping energy region [26℄. Therefore the slope seems not tohange from 1014:5 eV to 1019 eV. If we take the absolute values of SIBYLL model asused in Dawson et al. [17℄ (refer to Fig. 4 of their paper), the omposition beomesheavier than iron below 1017 eV. This onlusion demonstrates that it is importantto ompare the experimental results with simulations in as wide energy range aspossible. 24
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RMS of Xmax - model-independent quantity (Aloisio et al. 2008)
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fragmentation of nuclear spectator part - factor of 2 di�erence for
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still much smaller �uctuations than for p-induced showers
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Pierre Auger data - strong contradiction between Xmax & σXmax :

(�gures from Wilk & Wlodarszik 2010)

I 〈Xmax〉 - p-dominance at 1018 eV

I 〈σXmax〉 - Fe-dominance from 1018

I hadronic interactions:

no freedom to change 〈σXmax〉
smaller σ inel

p−air to adjust 〈Xmax〉?
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Conclusions

EAS simulations - considerable progress over the last two decades

I standard EAS simulation packages are wide-spread in the �eld,
compared to various measurements

I unlike 20 years ago, good overall description of EAS data

I wide range of applications: 'standard' EAS techniques,
�uorescence, Cherenkov & radio emission

New e�cient approaches to EAS simulation - 'hybrid' procedures:
combination of MC & numerical techniques

Still puzzles in CR composition studies - related to hadronic models

I muon puzzle - no indication that models are wrong from LHC

I Xmax puzzle - crucial LHC measurement (σ tot
pp ) ahead
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