

Precision measurements in the multi-strange baryon sector using LHC Run 2 data with the ALICE experiment

Romain Schotter – PhD student 2020-2023

Supervisors : Antonin Maire & Boris Hippolyte

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(ss\bar{s})$

- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

- Almost 4 years after the end of LHC Run 2, the LHC has restarted, as well as the experiments installed on the ring (ATLAS, CMS, LHCb, **ALICE**).
- During this long shut down, the hardware and the software of **ALICE** have been upgraded in order to get :

 \rightarrow More statistics

 \rightarrow Better tracking and vertexing

 \rightarrow With the LHC Run 3, ALICE steps into the precision era !

- In the (multi-)strange hadron sector, with the end of LHC Run 2, ALICE has already entered the precision era.
- In order to fully exploit and push the Run 2 data to their limits :
 - Testing the CPT symmetry via the mass measurements of the Ξ(dss) and Ω(sss)
 - A multidifferential study on the correlation between $\Omega(sss)$ and $\phi(s\bar{s})$ yields

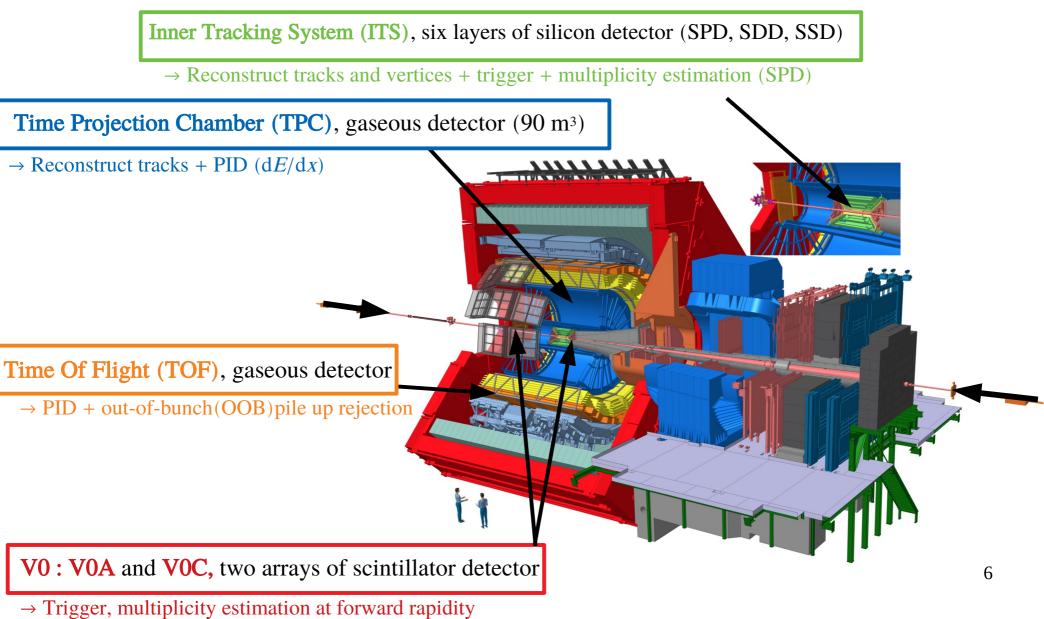
I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(ss\bar{s})$


- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

The ALICE 1 set-up

ALICE 1 is composed of 19 detection systems (during LHC Runs 1 & 2)

ALICE

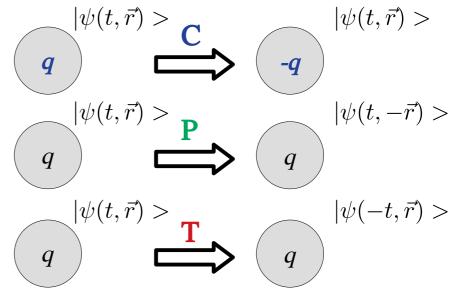
I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the $\Xi(dss)$ and $\Omega(sss)$

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(ss\bar{s})$


- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

Motivations

- The Standard Model was initially built upon the invariance of the discrete symmetries of $|f(t, \vec{r})| = |f(t, \vec{r})|$
 - Charge conjugation (C),
 - Parity transformation (P),
 - Time reversal (T),

• And the combined **CPT-symmetry**

• Strong and electromagnetic interactions are invariant under these transformations

BUT the weak interaction violates CP-symmetry \rightarrow T is violated

Motivations

- Only the combined CPT-symmetry is conserved
 - \rightarrow 2 consequences :
 - 1) Particles and antiparticles share the same fundamental properties Ex : Lifetime, mass,... (except for the sign of the quantum numbers)
 - 2) Particles and antiparticles are created in pairs

 \rightarrow contradiction with astronomical observations (matter-antimatter asymmetry)

- CP violation is too small to account for the matter-antimatter asymmetry
 → need additionnal sources of symmetry violation including CPTsymmetry violation
- It is decisive to test CPT invariance, especially when a precision gain is possible

Motivations

MASS

• Previous mass measurements suffer of low statistics

Ω^- MASS

The fit assumes the Ω^- and $\overline{\Omega}^+$ masses are the same, and averages them to

VALUE (MeV)	EVTS	DOCUMENT ID
1321.71 ± 0.07	OUR FIT	
$1321.70 \pm 0.08 \pm 0.05$	$2478 \pm \! 68$	ABDALLAH 2006E
$\overline{\Xi}^+$ MASS		
	nd . 🥙 masses and i	he $\underline{\sigma}^{-} - \overline{\underline{\sigma}}^{+}$ mass difference. It assume
	nd .? masses and t	he $\Xi^ \overline{\Xi}^+$ mass difference. It assume DOCUMENT ID
The fit uses the Ξ^- , $\overline{\Xi}^+$, ar		

VALUE (MeV)	EVTS	DOCUMENT ID	
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT		
$\textbf{1672.43} \pm \textbf{0.32}$	OUR AVERAGE		
1673 ± 1	100	HARTOUNI	1985
1673.0 ± 0.8	41	BAUBILLIER	1978
1671.7 ± 0.6	27	HEMINGWAY	1978
$\overline{\Omega}^+$ MASS The fit assumes the Ω	$\overline{\ }$ and $\overline{\varOmega}^+$ masses are th	same, and averages	them toget
VALUE (MeV)	EVTS	DOCUMENT ID	
$\textbf{1672.45} \pm \textbf{0.29}$	OUR FIT		
$\textbf{1672.5} \pm \textbf{0.7}$	OUR AVERAGE		
1672 ± 1	72	HARTOUNI	1985
1673.1 ± 1.0	1	FIRESTONE	1971B

 \rightarrow coming from the difficulty to produce as much matter as antimatter With the LHC, we have an excellent source of matter and antimatter !

- Goal : Using the ALICE detector
 - Provide new mass measurements of the Ξ and Ω
 - And compute their mass difference to test CPT invariance

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the $\Xi(dss)$ and $\Omega(sss)$

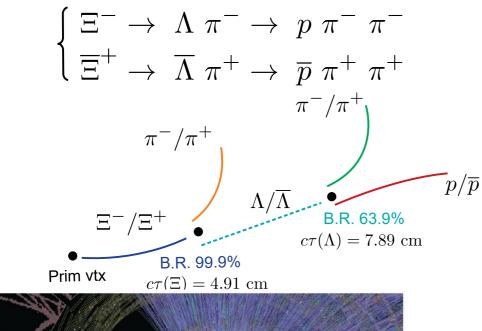
- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

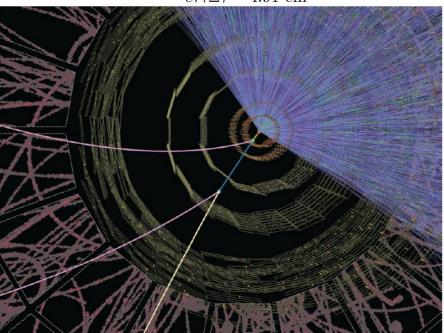
III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(ss\bar{s})$

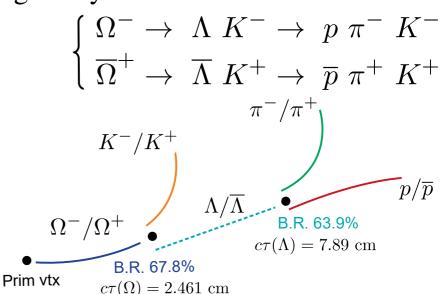
- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

The dataset


Objective : measure the mass of the Ξ and $\Omega,$ using LHC run II data


- Data :
 - ~ 2.2×10^9 pp collisions at $\sqrt{s} = 13$ TeV (LHC16 + LHC17 + LHC18)
 - Represents $\sim 140 \times 10^6$ cascade candidates
- Event Selection :
 - ESDs,
 - Revertexing,
 - kINT7 and/or kHighV0M (MB + high multiplicity),
 - Remove in-bunch (IB) and out-of-bunch (OOB) pile up
- Analysis task :


https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/ Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2

Analysis details

• Ξ and Ω will be studied in the following decay channel :

 Ξ and Ω are distinguished from the combinatorial background using topological selections

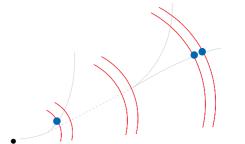
Ξ selections

ALICE

• Ξ are reconstructed using topological selections

Ξ-(Ξ+)	Cut value
y	< 0.5
рТ	[1;5] GeV/c

• Cascade selections


DCA Bach To PV	> 0.04 cm
DCA Casc daughters	< 1.3 cm
Casc Radius	> 0.6 cm
Casc Cos PA	> 0.97
Proper Lifetime	> 3 x 4.91 cm
Wrong PA	> 0.04

- Track selections :
 - $\bullet ~|\eta| ~<~ 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

• V0 selections

DCA V0 to PV	> 0.04 cm
DCA Pos to PV	> 0.03 (0.04) cm
DCA Neg to PV	> 0.04 (0.03) cm
DCA V0 daughters	< 1.5 cm
V0 Radius	> 1.2 cm
V0 Cos PA	> 0.97
V0 Mass - A Mass	< 0.008 GeV/c ²

- ITS hit requirements
 - Bachelor : SPD 0 OR 1
 - Proton : SSD 4 OR 5

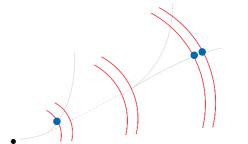
Ω selections

ALICE

• Ω are reconstructed using topological selections

Ω -(Ω +)	Cut value
y	< 0.5
рТ	[1;5] GeV/c

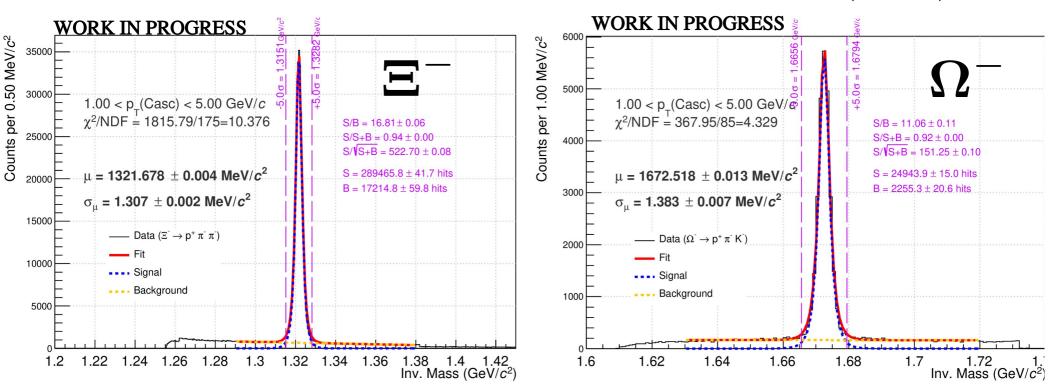
• Cascade selections


DCA Bach To PV	> 0.04 cm
DCA Case daughters	< 1.3 cm
Casc Radius	> 0.5 cm
Casc Cos PA	> 0.97
Proper Lifetime	> 3 x 2.46 cm
Wrong PA	> 0.04
Casc Mass - Ξ Mass	> 0.008 GeV/c2

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

• V0 selections

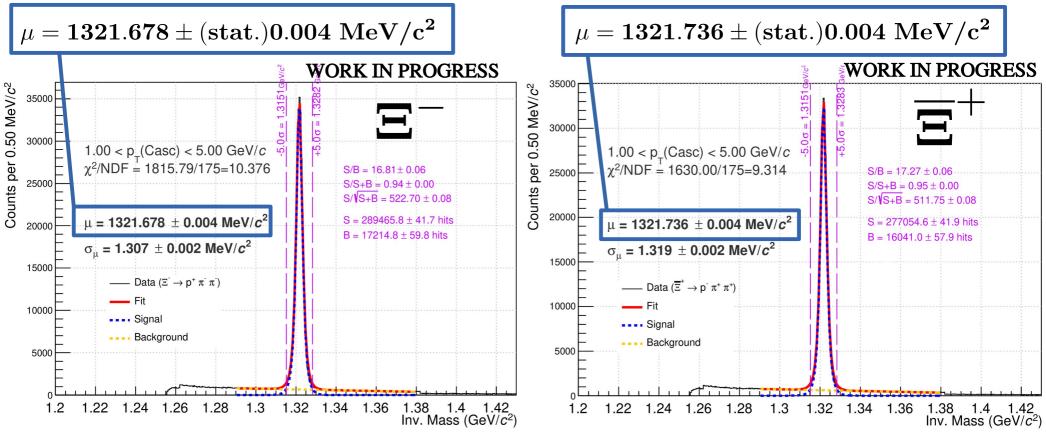
DCA V0 to PV	> 0.04 cm
DCA Pos to PV	> 0.03 (0.04) cm
DCA Neg to PV	> 0.04 (0.03) cm
DCA V0 daughters	< 1.5 cm
V0 Radius	> 1.1 cm
V0 Cos PA	> 0.97
V0 Mass - A Mass	< 0.008 GeV/c ²


- ITS hit requirements
 - Bachelor : SPD 0 OR 1
 - Proton : SSD 4 OR 5

Mass extraction

- Background substraction for inv. mass analysis :
 - Fit with a *modified* Gaussian + linear function

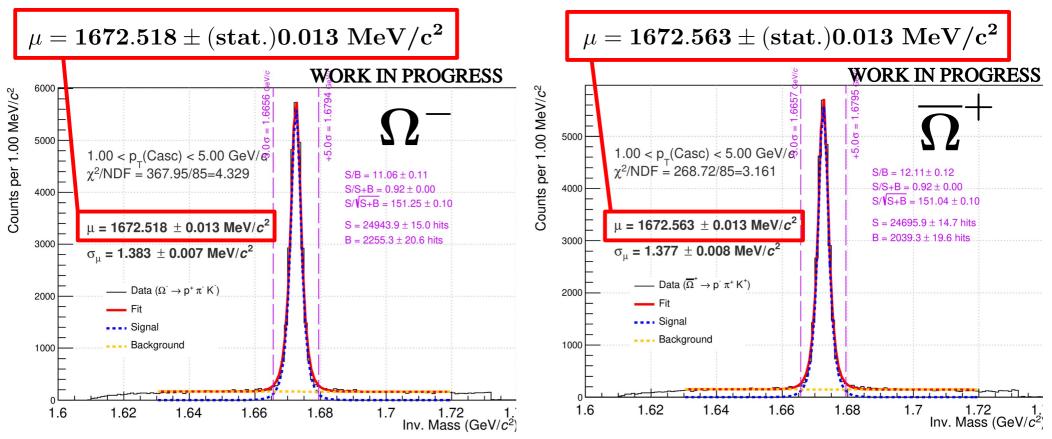
Modified Gaussian =
$$A \cdot \exp\left(-0.5u^{1+\frac{1}{1+0.5u}}\right)$$
; $u = \left|\frac{x-\mu}{\sigma}\right|$


Т

Т

First Ξ mass measurements

ALICE


$\mathbf{M_{PDG}(\Xi)} = 1321.71 \varnothing \pm 0.07 \varnothing ~ \mathbf{MeV/c^2}$

First Ω mass measurements

$\mathbf{M_{PDG}}(\Omega) = 1672.45 \varnothing \pm 0.29 \varnothing \ \mathbf{MeV/c^2}$

- Expected main source of systematic uncertainties :
 - Topological selections
 - TPC selections
- Quantification of systematic uncertainties :
 - Vary these selections (14 selections)
 - Observe how the extracted mass and the error are distributed over 20 000 different set of selections

Variables	Default values	Range (Signal variation)
DCA Bach To PV	> 0.04 cm	[0.05–0.2] (19%)
DCA Casc daughters	< 1.3 cm	[0.4-1.2] (22%)
Casc Radius	> 0.5 cm	[0.5–1.6] (21%)
Casc Cos PA	> 0.97	[0.97-0.999] (55%)
Proper Lifetime	> 3 x 2.46 cm	[2.5-5] (27%)
DCA V0 to PV	> 0.04 cm	[0.06-0.2] (18%)
DCA Pos to PV	> 0.03 (0.04) cm	[0.04-0.5] (28%)
DCA Neg to PV	> 0.04 (0.03) cm	[0.04-0.5](29%)
DCA V0 daughters	< 1.5 cm	[0.4-1.2] (32%)
V0 Radius	> 1.1 cm	[1.2-5] (17%)
V0 Cos PA	> 0.97	[0.97-0.998] (50%)
V0 Mass – A Mass	$< 0.008 \ { m GeV}/c^2$	[0.002-0.007] (33%)

TPC Min Nbr Cr Rows	> 70	[70-90] (17%)
TPC PID	< 3σ	[1-3] (15%)

- ALICE
- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)

- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)

- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times

- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times
- For each set of selections *i*, we extract :
 - The measured mass μ_i \rightarrow store in an histogram \implies $\begin{cases} Mass = Mean = \bar{\mu} \\ \sigma_{syst} = RMS \end{cases}$
 - The error on the mass σ_i \rightarrow store in an histogram $\rightarrow \sigma_{stat} = \bar{\sigma}$

- For each selection, a random cut value is extracted from the actual distribution of this variable in the variation range (using TUnuran)
- The new set of selections (14 selections) is then used to obtain the inv. mass distribution of the particle of interest (Ξ, Ω)
- This procedure is repeated 20 000 times
- For each set of selections *i*, we extract :
 - The measured mass difference $\Delta \mu_i / \mu_i^{\text{part}} = (\mu_i^{\overline{\text{part}}} \mu_i^{\text{part}}) / \mu_i^{\text{part}}$

$$\rightarrow \text{ store in an histogram} \implies \begin{cases} \frac{\Delta \text{Mass}}{\text{Mass}} = \text{Mean} = \frac{\Delta \mu_i}{\mu_i^{\text{part.}}} \\ \sigma_{\text{syst}} = \text{RMS} \end{cases}$$

• The error on the mass difference $\sigma_{(\mu_i^{\overline{\text{part}}} - \mu_i^{\text{part}})/\mu_i^{\text{part}}}$

- Systematic uncertainties :
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
Ξ	0.005	0.010
Ω	0.015	0.014

Mass difference		
Particle	Stat. Uncert.	Syst. Uncert.
	$(\times 10^{-5})$	$(\times 10^{-5})$
[1]	0.77	0.79
Ω	0.79	1.19

- Systematic uncertainties :
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
[I]	0.005	0.010
Ω	0.015	0.014

Mass difference		
Particle		Syst. Uncert.
	$(\times 10^{-5})$	$(\times 10^{-5})$
[I]	0.77	0.79
Ω	0.79	1.19

• B field precision

Precision : 0.0001 T

$$p_{\rm T} = 0.3 \cdot B \cdot R \longrightarrow p_{\rm T, new} = \frac{B}{B_0} p_{\rm T, 0}$$

Here $B/B_0 = 1.0001$ or 0.9999

- Systematic uncertainties :
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
[I]	0.005	0.010
Ω	0.015	0.014

• B field precision

[]	/	0.006
Ω	/	0.006

Mass difference		
Particle	Stat. Uncert.	Syst. Uncert.
	$(\times 10^{-5})$	$(\times 10^{-5})$
[I]	0.77	0.79
Ω	0.79	1.19

[I]	/	Negl. (?)
Ω	/	Negl. (?)

- Systematic uncertainties :
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
[1]	0.005	0.010
Ω	0.015	0.014

• B field precision

[I]	/	0.006
Ω	/	0.006

[1]	/	Negl. (?)
Ω	/	Negl. (?)

Choice of the fit functions

Try different fit functions : Gaussian, double Gaussian, modified Gaussian, Bukin function

- Extracted mass = weighted average
- Systematic uncertainties = weighted RMS

Particle	Stat. Uncert. $(\times 10^{-5})$	Syst. Uncert. $(\times 10^{-5})$
[I]	0.77	0.79
Ω	0.79	1.19

Mass difference

- Systematic uncertainties :
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
Ξ	0.005	0.010
Ω	0.015	0.014

• B field precision

[1]	/	0.006
Ω	/	0.006

• Choice of the fit functions

Ξ	/	0.004
Ω	/	0.003

ALICE

Mass difference			
Particle Stat. Uncert. Syst. Uncert.			
	$(\times 10^{-5})$	$(\times 10^{-5})$	
[I]	0.77	0.79	
Ω	0.79	1.19	

[I]	/	Negl. (?)
Ω	/	Negl. (?)

[]	/	0.25
Ω	/	0.01

- Systematic uncertainties :
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
Ξ	0.005	0.010
Ω	0.015	0.014

• B field precision

[]	/	0.006
Ω	/	0.006

• Choice of the fit functions

[Ξ]	/	0.004
Ω	/	0.003

[I]	/	0.25
Ω	/	0.01

Choice of the fitting range

 \rightarrow Vary the fitting range and look at the mass and mass difference ³⁰ deviations wrt to the default fitting range

Mass difference			
Particle Stat. Uncert. Syst. Uncert.			
	$(\times 10^{-5})$	$(\times 10^{-5})$	
Ξ	0.77	0.79	
Ω	0.79	1.19	

	1	
Ω	/	Negl. (?)

Negl. (?)

- Systematic uncertainties : work in progress
 - Topological and TPC selections :

Mass Values		
Particle	Stat. Uncert.	Syst. Uncert.
	$({ m MeV}/c^2)$	$({ m MeV}/c^2)$
[1]	0.005	0.010
Ω	0.015	0.014

•	B field precision
---	-------------------

[1]	/	0.006
Ω	/	0.006

• Choice of the fit functions

[1]	/	0.004
Ω	/	0.003

• Choice of the fitting range

	_	
[I]	/	0.002
Ω	/	0.003

Mass difference					
Particle	Stat. Uncert.	Syst. Uncert.			
	$(\times 10^{-5})$	$(\times 10^{-5})$			
[I]	0.77	0.79			
Ω	0.79	1.19			

[I]	/	Negl. (?)
Ω	/	Negl. (?)

[1]	/	0.25
Ω	/	0.01

Systematic study results

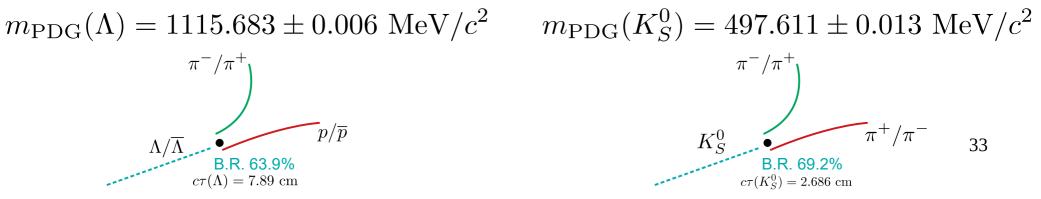
• Mass values : WORK IN PROGRESS

Particle	$\frac{\rm Mass}{({\rm MeV}/c^2)}$	Tot Uncert. (MeV/c^2)	Stat. Uncert. (MeV/c^2)	Syst. Uncert. (MeV/c^2)		PDG Tot Uncert. (MeV/c^2)
[I]	1321.762	0.014	0.005	0.013	1321.71	0.07
Ω	1672.570	0.022	0.015	0.016	1672.45	0.29

- Improve current PDG mass values by a factor 5 for Ξ and ~13 for Ω
- Test CPT-invariance : mass difference values WORK IN PROGRESS

Particle	Mass diff. $(\times 10^{-5})$	Tot Uncert. $(\times 10^{-5})$	Stat. Uncert. $(\times 10^{-5})$	Syst. Uncert. $(\times 10^{-5})$	PDG Mass $diff(\times 10^{-5})$	PDG Tot Uncert $(\times 10^{-5})$
[1]	4.33	1.15	0.77	0.85	2.5	8.7
Ω	0.61	2.13	1.75	1.21	1.44	7.98

- Improve current PDG mass diff. values by a factor ~7.6 for Ξ and ~3.8 for Ω
- Mass difference ~ 0 : CPT still valid


Check : compare with PDG mass

Mass values : WORK IN PROGRESS

Particle	$\frac{\rm Mass}{({\rm MeV}/c^2)}$	Tot Uncert. (MeV/c^2)	Stat. Uncert. (MeV/c^2)		PDG Mass (MeV/c^2)	PDG Tot Uncert. (MeV/c^2)
[1]	1321.762	0.014	0.005	0.013	1321.71	0.07
Ω	1672.570	0.022	0.015	0.016	1672.45	0.29

- Gap between our mass values and the PDG ones (almost 1σ for the Ξ)
- To check that the analysis is working properly :
 - Take a particle whose PDG mass is evaluated very precisely ($\sigma \sim \text{few keV}/\text{c}^2$),
 - Check that the mass extracted by the analysis corresponds to the PDG mass
- Here, this check will be done using Λ and K0s

 p/\overline{p} = 7.89 cm

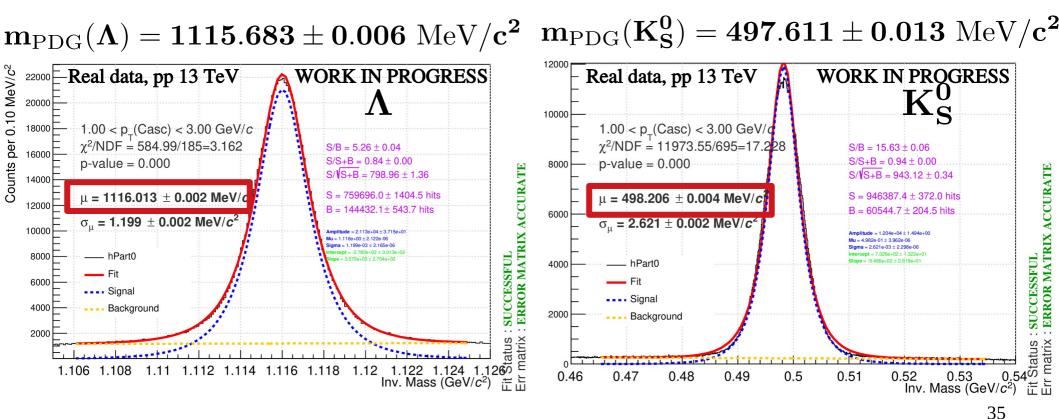
V0 candidate selections

- Candidates are Λ , anti- Λ and KOs
- V0 selections

Variables	Cut
Rapidity	< 0.5
Pt	[1; 5] GeV/c

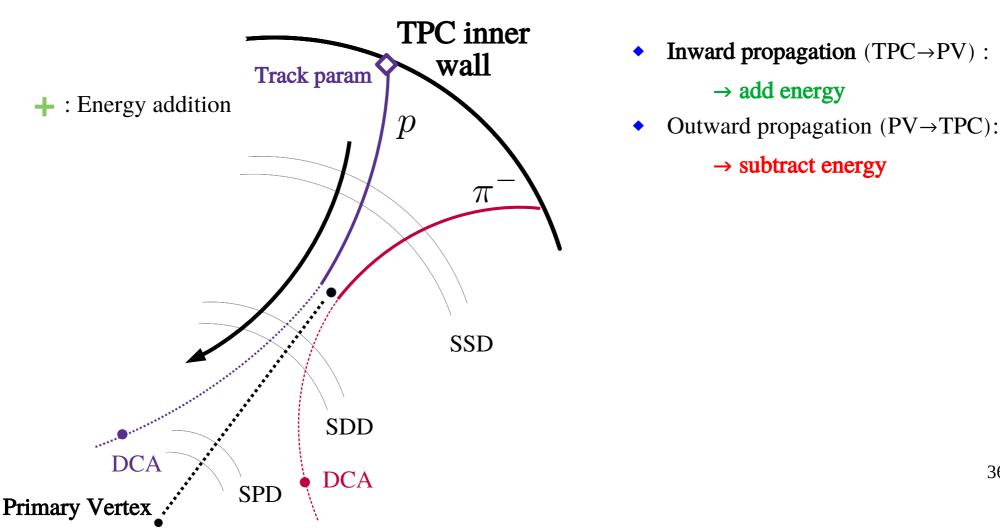
• Track Selections

TPC refit	kTRUE
TPC PID N Sigma	< 3 o
Nbr crossed rows	> 70
η	< 0.8


• Topological selections

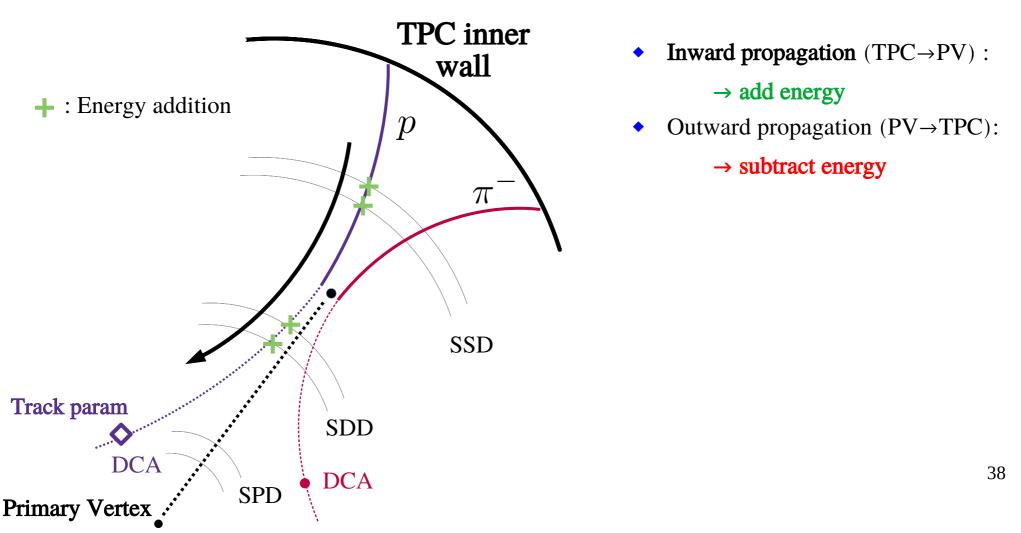
Variables	Cut A (K0s)
DCA V0 daughters	< 1.5 (1.0)
V0 Radius	> 0.5 cm
V0 Cos PA	> 0.97
V0 Lifetime	< 3x7.89 (3x2.686) cm
DCA V0 to PV	< 1 (0.06) cm
DCA Pos to PV	> 0.06 cm
DCA Neg to PV	> 0.06 cm

Mass shift

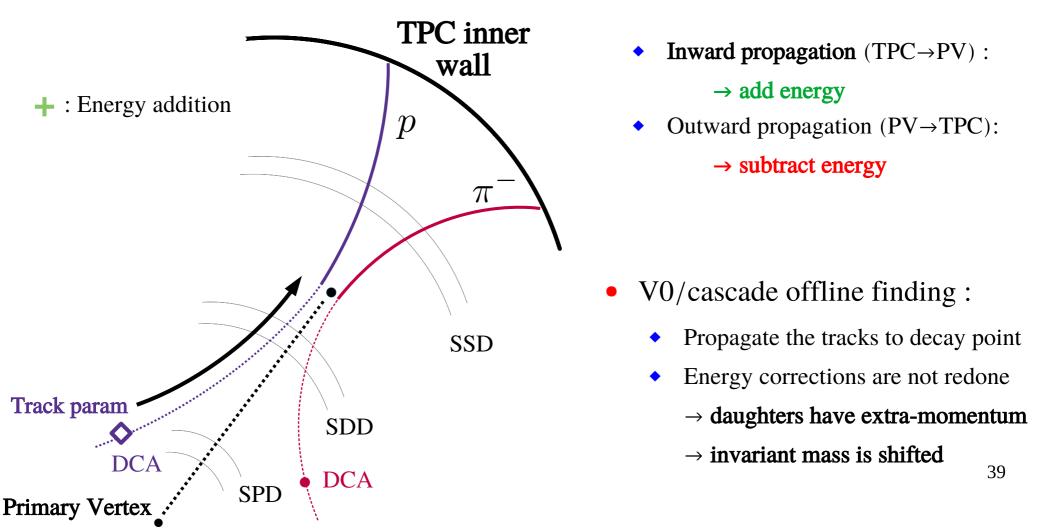

- Same procedure as for the Ξ and Ω
- The extracted mass is above the PDG mass by
 - ~ $300 \text{ keV}/c^2$ for Λ
 - ~ 600 keV/*c*² for K0s

Main cause of the mass shift

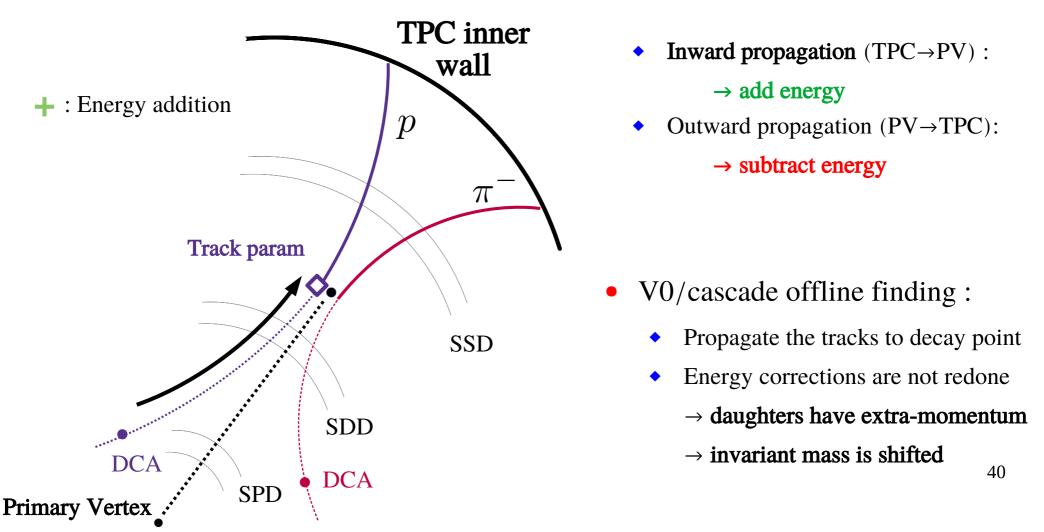
- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :



- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :



- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :



- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

- Once all tracks are reconstructed, they are **propagated to their point of closest approach to the primary vertex** (= hypothesis that all the tracks are primaries)
- In the propagation, corrections on the energy loss (based on PID used for tracking) are applied :

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the $\Xi(dss)$ and $\Omega(sss)$

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\Omega(sss)$ to $\phi(s\bar{s})$

- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

The dataset

Objective : Correct for extra energy loss correction, using a MC sample.

- 2 MC samples :
 - General purpose, anchored on LHC18m (LHC21a5a)
 - Enriched in Ξ and Ω , anchored on LHC18i (LHC20i2b)
- Event Selection :
 - ESDs,
 - Revertexing,
 - kINT7 and/or kHighV0M (MB + high multiplicity),
 - Remove in bunch (IB) and out-of-bunch (OOB) pile up
- Analysis task :

https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/ Cascades/Run2/AliAnalysisTaskStrangenessVsMultiplicityRun2

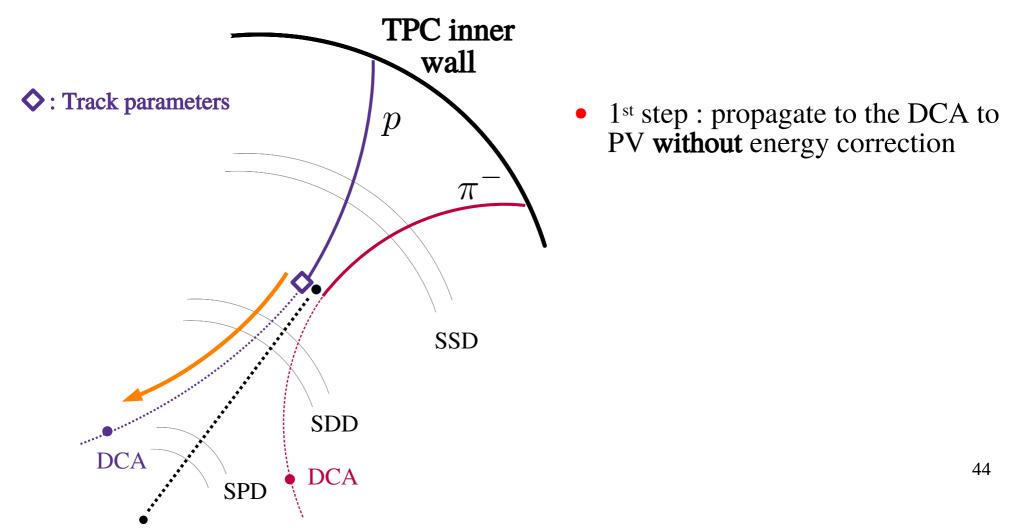
Candidate selections

- Candidates are **primary** Λ , anti- Λ and K0s
- V0 selections

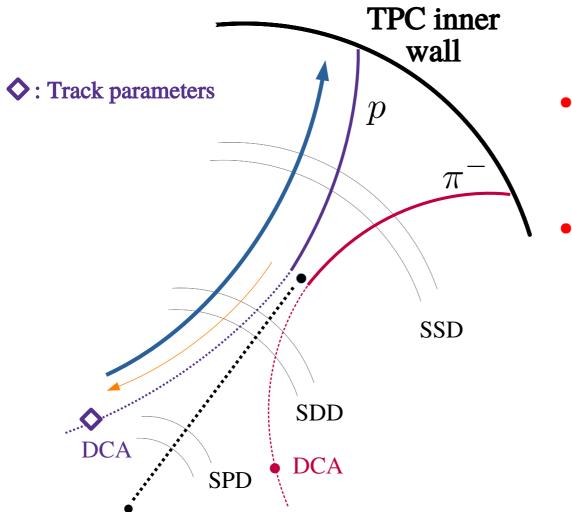
Variables	Cut
Rapidity	< 0.5
p _T	[1; 5] GeV/c
MC association	YES

• Track Selections

TPC refit	kTRUE
TPC PID N Sigma	< 3 σ
Nbr crossed rows	> 70
η	< 0.8

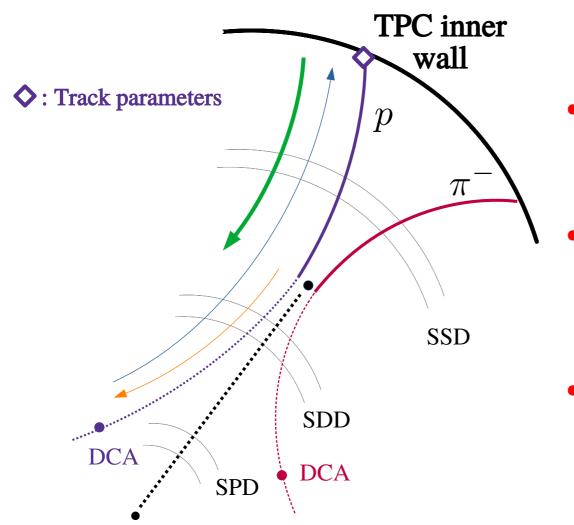

• Topological selections

Variables	Cut A (K0s)
DCA V0 daughters	< 1.5 (1.0)
V0 Radius	> 0.5 cm
V0 Cos PA	> 0.97
V0 Lifetime	< 3*7.89 (3*2.686) cm
DCA V0 to PV	< 1 (0.06) cm
DCA Pos to PV	> 0,06 cm
DCA Neg to PV	> 0.06 cm



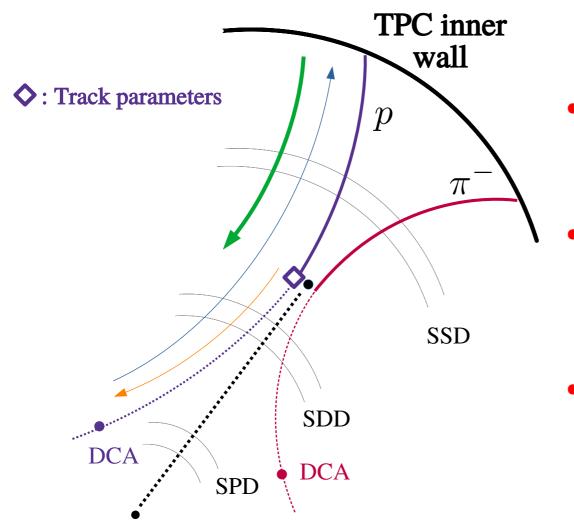
- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

ALICE


- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

- 1st step : propagate to the DCA to PV **without** energy correction
- ^{2nd} step : propagate to the TPC with energy correction (hyp : PID used during tracking)

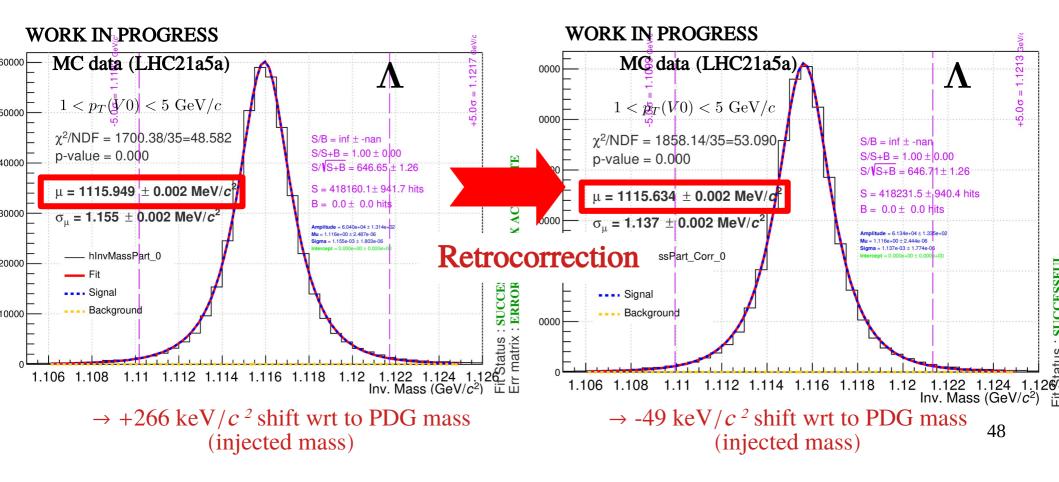
ALICE


- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

- 1st step : propagate to the DCA to PV **without** energy correction
- 2nd step : propagate to the TPC with energy correction (hyp : PID used during tracking)
- 3rd step : propagate back to decay point **with** energy correction (hyp : correct PID)

ALICE

- Redo track propagation with the appropriate energy loss correction
 - Propagate the track to the inner wall of the TPC (w/ energy correction)
 - Go back to the decay point, applying energy correction w/ the correct PID assumption

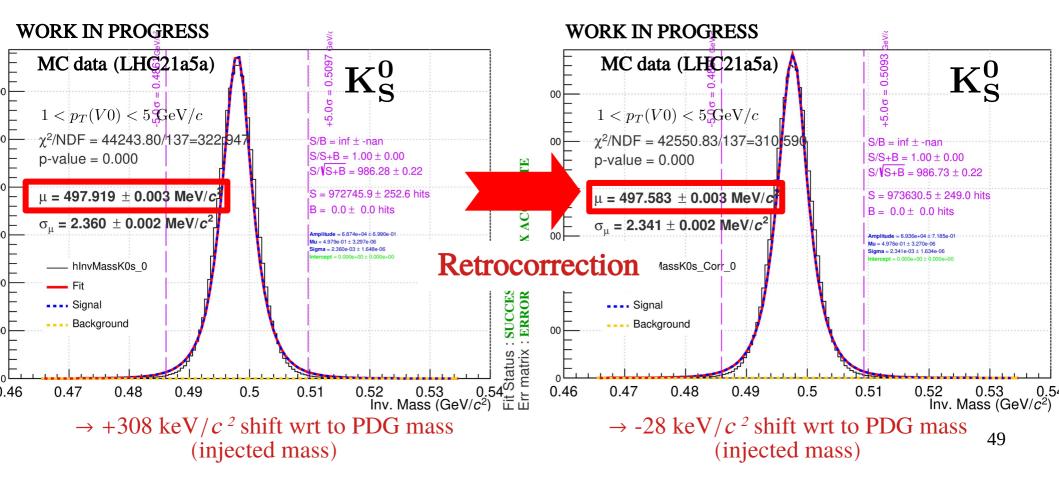

- 1st step : propagate to the DCA to PV **without** energy correction
- 2nd step : propagate to the TPC with energy correction (hyp : PID used during tracking)
- 3rd step : propagate back to decay point **with** energy correction (hyp : correct PID)

Λ Invariant mass

• To get an idea whether or not these corrections are going in the right direction

 \rightarrow look at the invariant mass

 $m_{\rm PDG}(\Lambda) = 1115.683 \pm 0.006~{\rm MeV}/c^2$



KOs Invariant mass

• To get an idea whether or not these corrections are going in the right direction

 \rightarrow look at the invariant mass

 $m_{\rm PDG}(K^0_S) = 497.611 \pm 0.013~{\rm MeV}/c^2$

I) Introduction

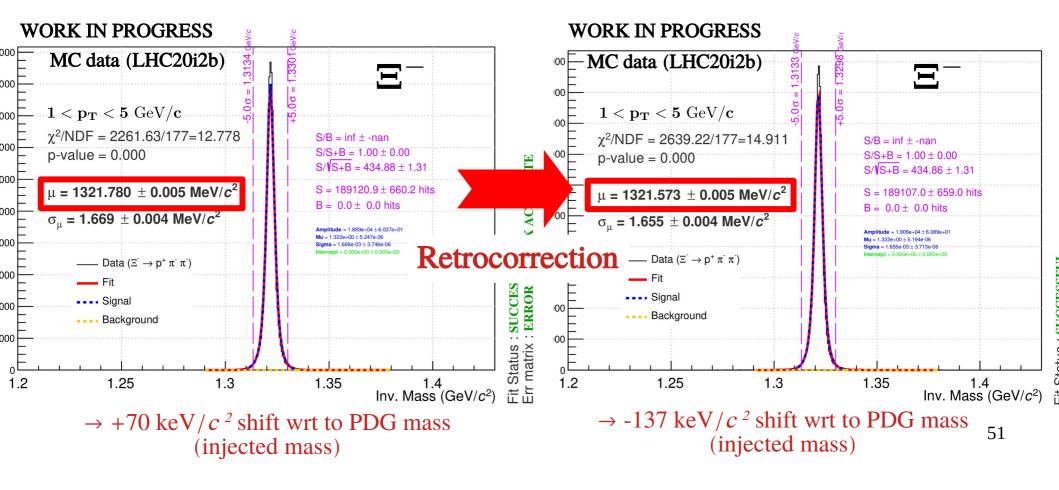
- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the $\Xi(dss)$ and $\Omega(sss)$

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(ss\bar{s})$

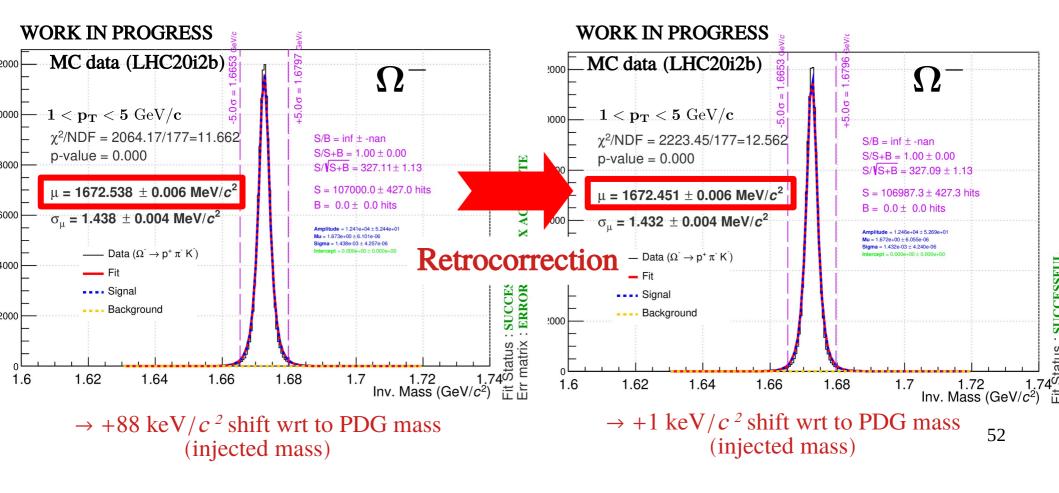
- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results


IV) Conclusion and other activities

Ξ Invariant mass

- Look at dE/dx retrocorrection applied on cascades
- In MC data (LHC20i2b) :

 $m_{\rm PDG}(\Xi) = 1321.71 \pm 0.07~{\rm MeV}/c^2$



Ω Invariant mass

- Look at dE/dx retrocorrection applied on cascades
- In MC data (LHC20i2b) :

 $m_{\rm PDG}(\Omega) = 1672.45 \pm 0.23~{\rm MeV/c^2}$

Conclusion

- On real data :
 - Improve PDG mass and mass difference values by at least a factor 5 and 3 respectively
 - Mass difference ~ 0 : CPT still valid but further constrained
- On MC data : a glimpse on the complexity of such a precision measurement
 - Our mass measurements have an offset wrt the PDG mass, whatever the particle of interest $(K_s, \Lambda, \Xi, \Omega)$
 - This mass shift mainly comes from extra energy addition during V0/cascade finding \rightarrow corrected now
- All the systematics are not done yet :

Source	TPC and topo. selections		Choice of the fitting function		Material budget	Our energy loss correction
Status	Done	Done	Done	Done	To do	To do

- Next step :
 - Understand why our dE/dx retrocorrection works so well on Ω but not on Ξ

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

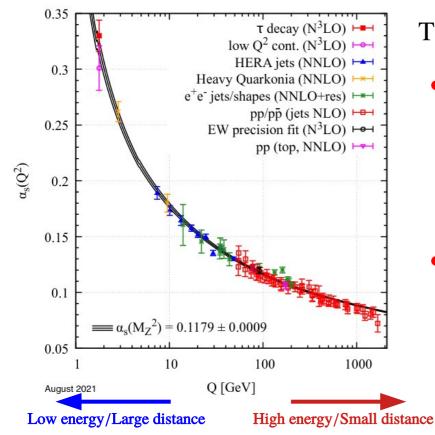
- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(sss)$

- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

ALICE


= partons

Quantum ChromoDynamics (QCD) is the current quantum field theory describing the strong interaction of colored quarks and gluons

- Quark : fermion, carries only one (anti)color
- Gluon : vector boson of the strong interaction, carries one color and one anticolor

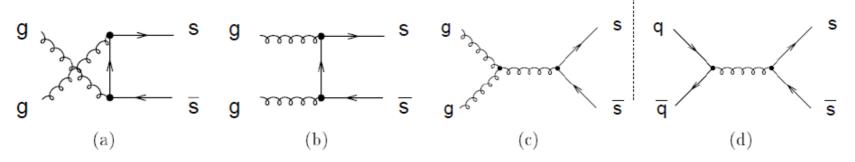
 \rightarrow gluons can interact together

Particle Data Group, Quantum Chromodynamics, Fig.9.3

Two regimes :

- Color confinement at low energy
 - \rightarrow quarks and gluons are confined within hadrons
 - \rightarrow described by **lattice QCD** (LQCD) for example

- Asymptotic freedom at high energy
 - \rightarrow quarks and gluons are almost free
 - \rightarrow described by **perturbative QCD (pQCD)**

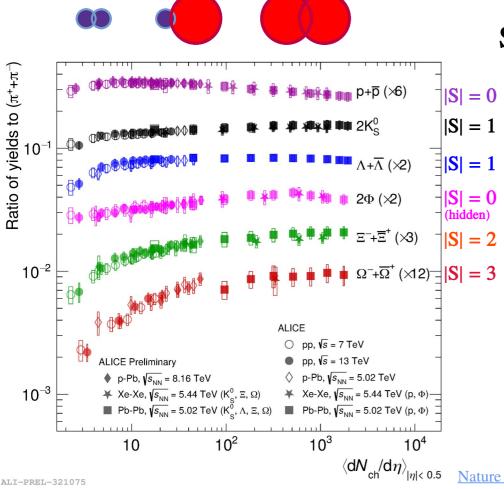

56

Lattice QCD predicts a phase transition from hadronic to partonic matter, i.e. a new phase of deconfined and thermalised partons

- \rightarrow the Quark Gluon Plasma (QGP)
 - Critical temperature > 155 MeV
 - Critical energy density ~ 1 GeV/fm³
 - Thermalisation time ~ 10⁻²⁴ sec

One of the key signatures of QGP is strangeness enhancement

• In the QGP, the mass of the strange quarks reduces to their bare mass, i.e. the mass coming from the Higgs mechanism $\rightarrow m_s = 93 \text{ MeV}/c^2 < T_{\text{QGP}}$

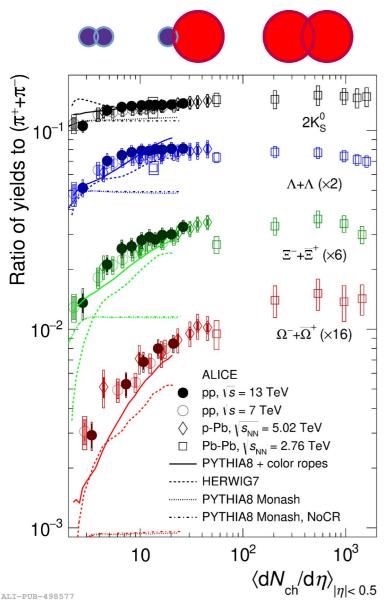


- The production of strange quarks is dominated by gluon fusion (reaction time shorter than qq annihilition, <u>Phys. Rev. Lett. 56, 2334 (1986)</u>)
- This excess of strange quarks should be reflected in the final hadron population

Strangeness enhancement is one of the key signatures of QGP :

Increase of the ratio of (multi-)strange to non-strange hadron yields with the multiplicity of charged particles produced in the collision

Strangeness enhancement in ALICE :


- **Smooth evolution** with the multiplicity of charged particles across different collision systems (pp, p-Pb, Pb-Pb)
- No dependence on the collision energy at LHC

More pronounced for hadrons with larger strangeness content

$$E(\Omega) > E(\Xi) > E(\Lambda) \simeq E(\mathrm{K}^0_{\mathrm{S}})$$

with E = the observed enhancement with respect to $(\pi^+ + \pi^-)$

57

Several phenomenological models qualitatively reproduce this effect, but **no unambiguous explanation yet**.

In order to get a better description of pp and AA collision dynamics :

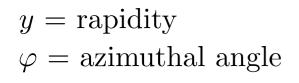
- Perform multi-differential measurements
- Compare them with QCD-inspired MC models

The starting point of our analysis is a prediction from Pythia8 (with color rope and color shoving) :

- $\phi(s\bar{s})$ production increases in the presence of a $\Omega(ss\bar{s})$
- The increase is greater when the $\phi(s\bar{s})$ is produced close to a $\Omega(sss)$

Eur. Phys. J. C 80 (2020) 693

 \rightarrow due to stat. limitations, this will <u>first</u> be done with Ξ

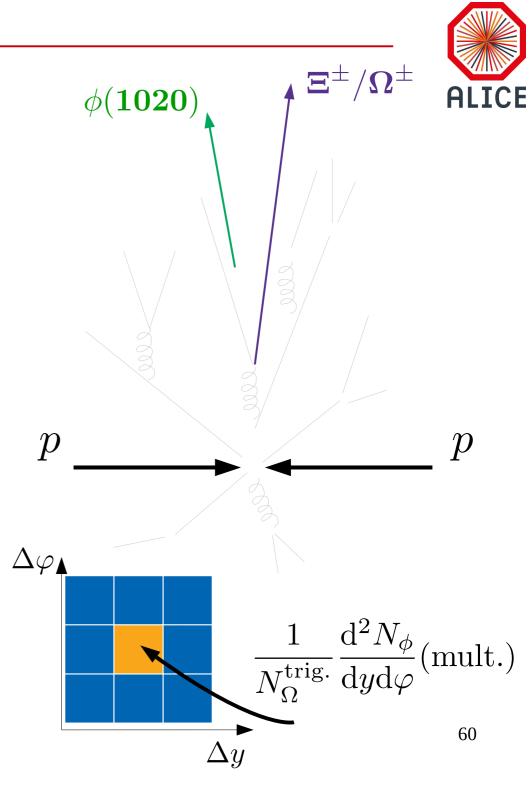

Correlation method

- 1) Selection of the trigger particle(s) : one Ξ or Ω cascade candidate
- 2) Identification of all the $\phi(1020)$ candidates (associated particles)
- **3)** Correlation between the trigger particle(s) and the associated particles

$$\Delta y = y_{\Omega} - y_{\phi}$$

$$\Delta \varphi = \varphi_{\Omega} - \varphi_{\phi}$$

$$p \xrightarrow{p}{\pi^{\pm}/K^{\pm}} \int_{A/K_{S}^{0}} \phi(1020)/K^{*} = \pm/\Omega^{\pm} \int_{A} \frac{\Xi^{\pm}/\Omega^{\pm}}{\Phi} \int_{A} \frac{\Xi^{\pm}/\Omega^{\pm}}{\Phi} \int_{A} \frac{\Phi}{\Phi} \int_{A$$


Correlation method

- 1) Selection of the trigger particle(s) : one Ξ or Ω cascade candidate
- 2) Identification of all the $\phi(1020)$ candidates (associated particles)
- 3) Correlation between the trigger particle(s) and the associated particles

$$\Delta y = y_{\Omega} - y_{\phi}$$

$$\Delta \varphi = \varphi_{\Omega} - \varphi_{\phi}$$

 $y = \text{rapidity} \\ \varphi = \text{azimuthal angle}$

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

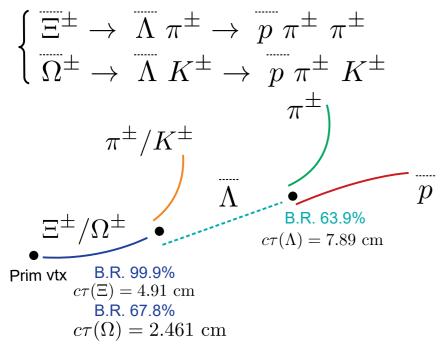
- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(sss)$

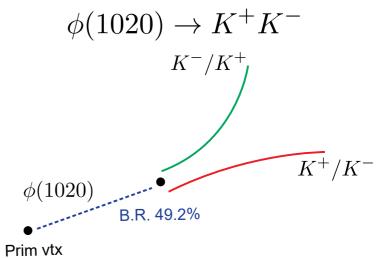
- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

The dataset


Objective : measure the $\phi(1020)$ yield as a fct($\Delta y = y_{\Omega} - y_{\phi}$), using Run 2 data

- Data : Analyzed π^{\pm} , p^{\pm} , K^{\pm} , $\phi(1020)$, K^* , K_S^0 , Λ , Ξ^{\pm} , Ω^{\pm}
 - $\sim 2.2 \times 10^9$ pp collisions at $\sqrt{s} = 13$ TeV (LHC16 + LHC17 + LHC18)
 - Represents $\sim 140 \times 10^6$ cascade candidates
- Event Selection :
 - kINT7 = Minimum Bias (MB),
 - Remove in bunch (IB) and out-of-bunch (OOB) pile up
 - Primary vertex $|z_{vtx}| < 10$ cm
- Analysis task :

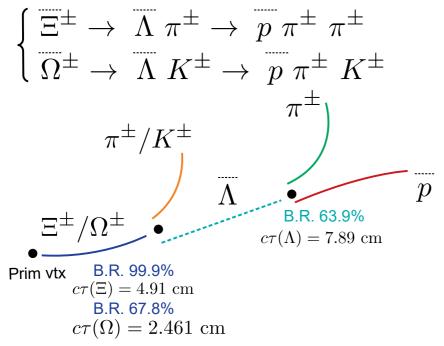

https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/ Cascades/Run2/AliAnalysisTaskStrangeCascadesTriggerAODRun2

The analysis

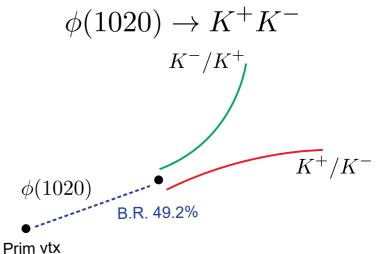
• Ξ/Ω and $\phi(1020)$ will be studied in the following decay channel :

 Ξ/Ω are reconstructed using topological selections

 $\phi(1020)$ resonances are reconstructed by pairing kaons, combinatorial background is subtracted using mixed events


• Analysis in multiplicity (using VOM estimator = multiplicity based on signal amplitude in the VO detectors)

Multiplicity class	Ι	II	III	IV	V	=	
$\sigma/\sigma_{ m INEL>0}$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14-19%	-	
$\langle \mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta angle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3		
Multiplicity class	VI	VII	VIII	IX	X	-	62
1 v							0.5
$\sigma/\sigma_{\rm INEL>0}$	19-28%	28-38%	38-48%	48-68%	68-100%	-	63



The analysis

• Ξ/Ω and $\phi(1020)$ will be studied in the following decay channel :

 Ξ/Ω are reconstructed using topological selections

 $\phi(1020)$ resonances are reconstructed by pairing kaons, combinatorial background is subtracted using mixed events

• Analysis in multiplicity (using VOM estimator = multiplicity based on signal amplitude in the VO detectors)

Multiplicity class	Ι	II	III	IV	V	=	
$\sigma/\sigma_{\rm INEL>0}$	0-0.95%	0.95-4.7%	4.7-9.5%	9.5-14%	14-19%	_	
$\langle \mathrm{d}N_{\mathrm{ch}}/\mathrm{d}\eta angle$	21.3 ± 0.6	16.5 ± 0.5	13.5 ± 0.4	11.5 ± 0.3	10.1 ± 0.3		
Multiplicity class	VI	VII	VIII	IX	Х	=	64
$\frac{\text{Multiplicity class}}{\sigma/\sigma_{\text{INEL}>0}}$	VI 19-28%	VII 28-38%	VIII 38-48%	1X 48-68%	X 68-100%	-	64

Ξ selections

 Ξ are reconstructed using topological selections

Ξ	Cut value
y	< 0.5
p _T (GeV/ <i>c</i>)	[0.6, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5, 2.9, 3.4, 4,5, 6.5]

• Cascade selections

DCA Bach To PV	> 0.04 cm
DCA Case daughters	< 1.3 σ
Casc Radius	> 0.6 cm
Casc Cos PA	> 0.999
Proper Lifetime	> 3 x 4.91 cm

• V0 selections

NO
> 0.04 cm
> 0.03 cm
> 0.03 cm
< 1.5 σ
> 1.2 cm
> 0.97
< 0.008 GeV/c ²

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 3

Ω selections

 Ω are reconstructed using topological selections

Ω	Cut value
y	< 0.5
p _T (GeV/ <i>c</i>)	[0.6, 1.0, 1.4, 1.8, 2.3, 2.8, 3.3, 3.8, 4.8, 6.5]

• Cascade selections

DCA Bach To PV	> 0.04 cm
DCA Casc daughters	< 1.6 σ
Casc Radius	> 0.5 cm
Casc Cos PA	> 0.997
Casc Mass - Ξ Mass	$> 0.008 \text{ GeV}/c^2$
Proper Lifetime	> 3 x 2.46 cm

• V0 selections

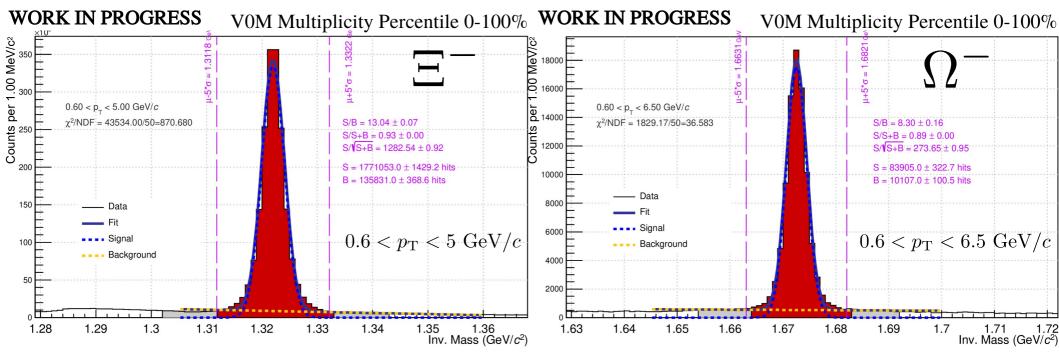
NO
> 0.04 cm
> 0.03 cm
> 0.03 cm
< 1.6 σ
> 1.1 cm
> 0.97
< 0.008 GeV/c ²

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 4

$\phi(1020)$ selections

- Track selections :
 - Standard cuts 2011
 - TPC PID Nsigma < 2
 - TOF PID Nsigma < 3 (only if track matches a hit in the TOF)
 - $\bullet |\eta| < 0.8$
 - $0.15 < p_{\rm T}({\rm track}) < 20 \ {\rm GeV/c}$

• $\phi(1020)$ selections:


 ϕ (1020)	Cut value
y	< 0.5
$p_{T} (GeV/c)$	[0.4, 0.8, 1.2, 1.8, 2.6, 3.4, 4.2, 5, 11]

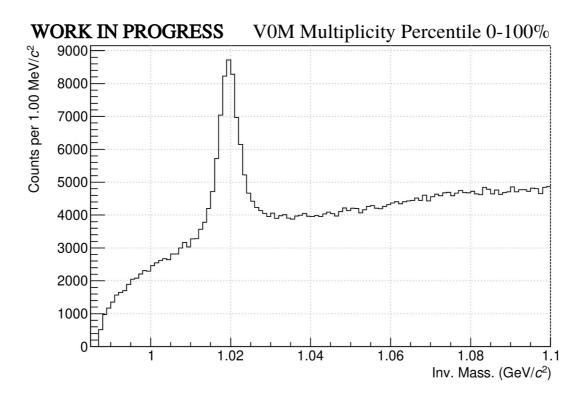
Kink topology	NO
TPC Nbr Crossed Rows	> 70 cm
TPC Ncr/Nfindable	>= 0.8
χ_{TPC}^{2}	< 4
Status	kITSrefit & kTPCrefit
Nbr Clusters in SPD	>= 1
DCAxy	$<0.0105 + 0.035 p_{T}^{-1.01}$
DCAz	< 2cm
SetDCAToVertex2D	kFALSE
SetRequireSigmaToVert	kFALSE
ex	
$\chi_{\text{TPC-CG}}^{2}$	< 36
χ_{ITS}^{2}	< 36

Ξ and Ω signal extraction

- Background substraction for inv. mass analysis :
 - Fit with a *modified* gaussian + linear function (sigma and mean value used as reference for bin counting)
 - Signal region between $\pm 5\sigma$; background region between $[-10\sigma; -5\sigma] \cup [+5\sigma; +10\sigma]$

$\phi(1020)$ signal extraction

- ALICE
- Two ways to compute background and substract it from the inv. mass :


Mixing pairs from 5 other different events (Event Mixing)

 $|\Delta \mathrm{PV}_z(\mathrm{Evt}_A, \mathrm{Evt}_B)| < 1 \mathrm{cm}$

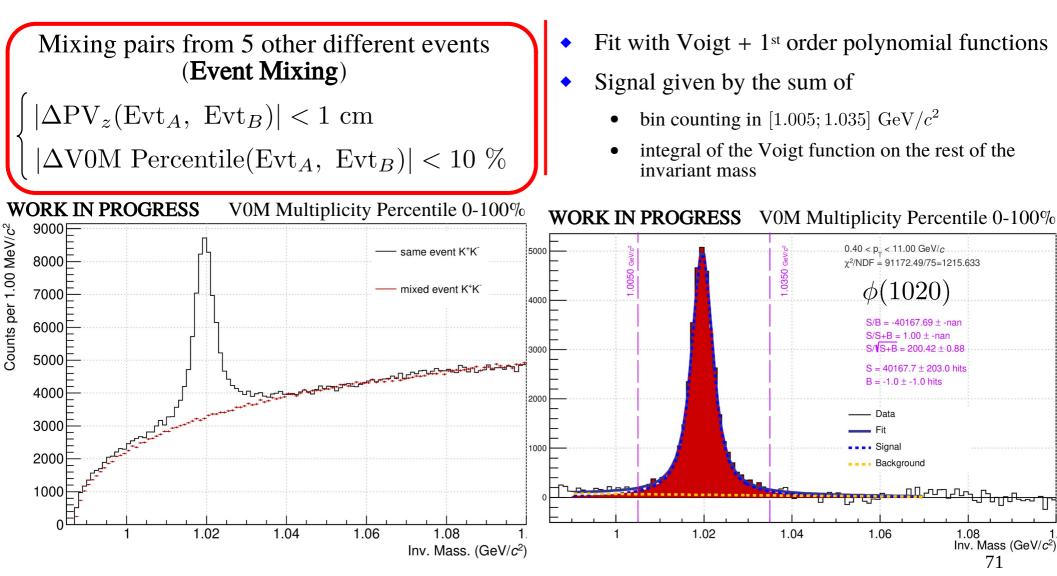
 $|\Delta \text{V0M Percentile}(\text{Evt}_A, \text{Evt}_B)| < 10 \%$

Rotate the pairs from the same event (Rotating)

Take one of kaons and rotate it by 180 degrees to break the correlation

$\phi(1020)$ signal extraction

• Two ways to compute background and substract it from the inv. mass :


Rotate the pairs from the same event (Rotating)

Take one of kaons and rotate it by 180 degrees to break the correlation

A Large Ion Collider Experiment

$\phi(1020)$ signal extraction

• Compute background :

Residual background substraction :

I) Introduction

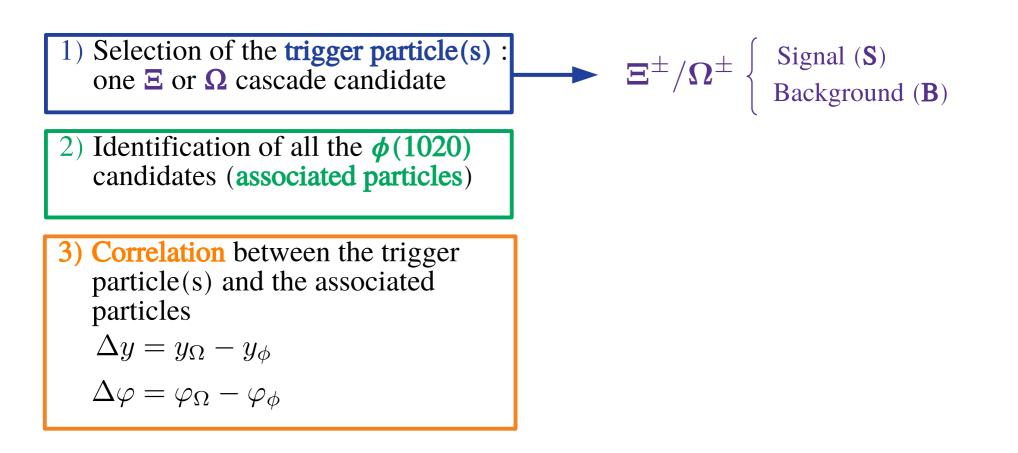
- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

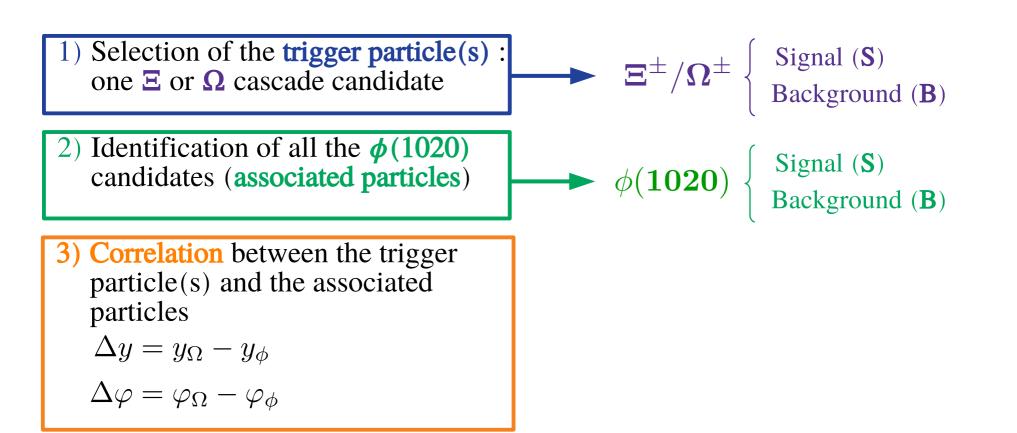
- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(sss)$

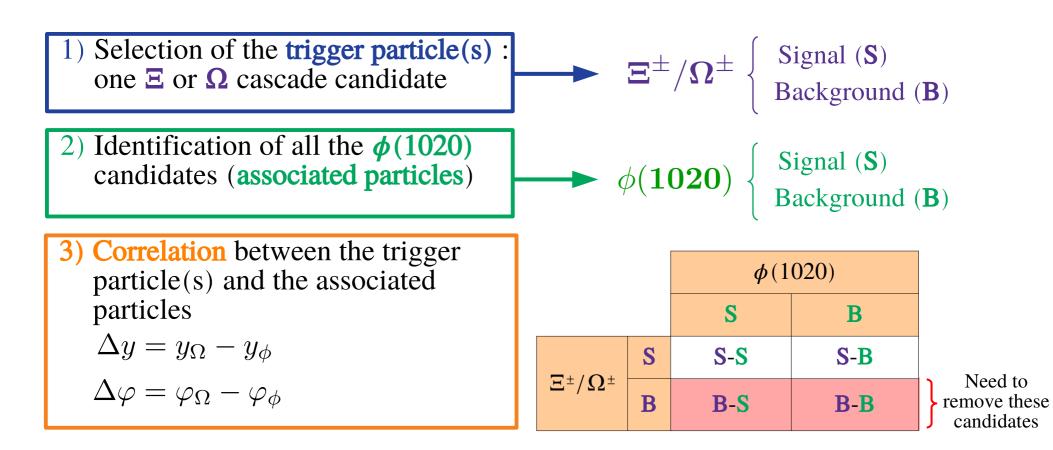
- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results



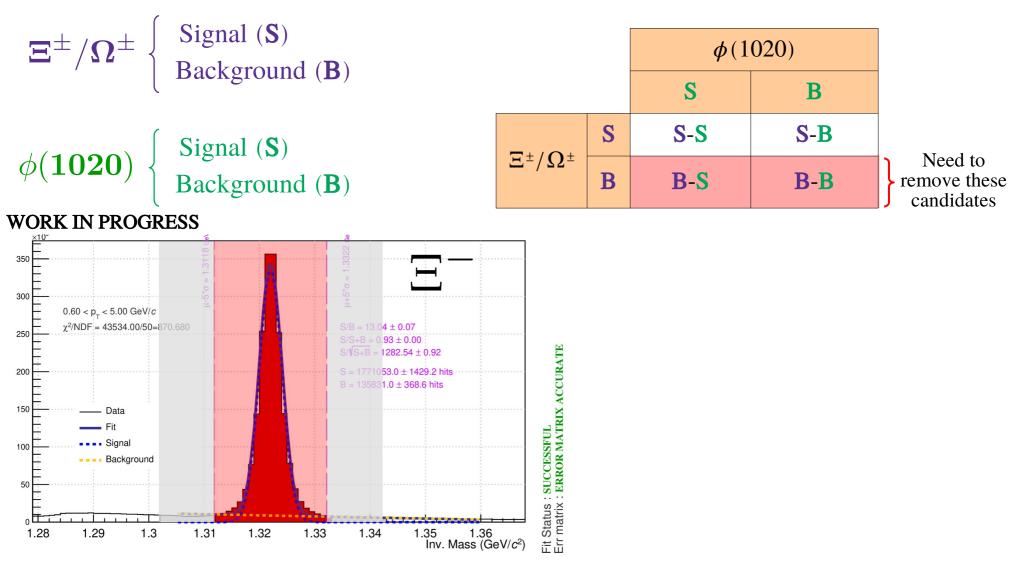
- 1) Selection of the trigger particle(s) : one Ξ or Ω cascade candidate
- 2) Identification of all the $\phi(1020)$ candidates (associated particles)
- 3) Correlation between the trigger particle(s) and the associated particles


$$\Delta y = y_{\Omega} - y_{\phi}$$

 $\Delta \varphi = \varphi_{\Omega} - \varphi_{\phi}$

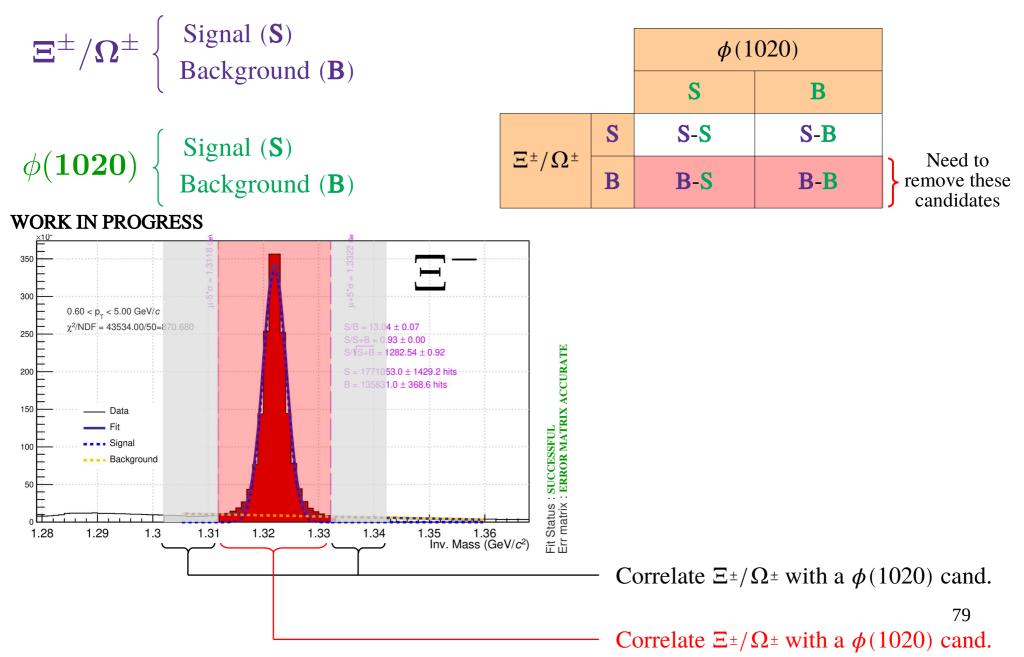


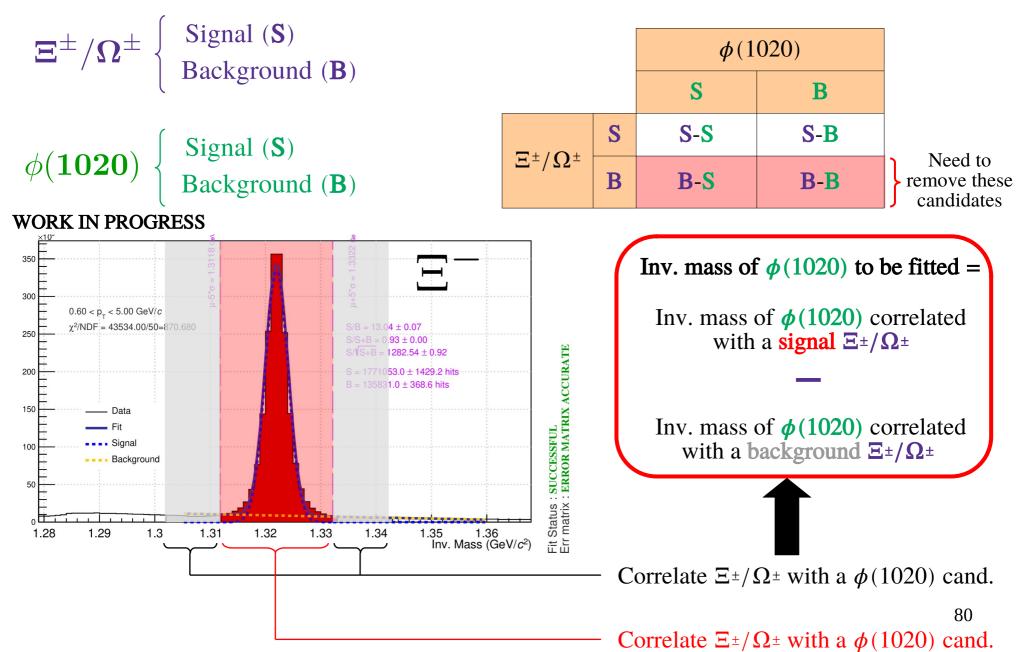
1) Selection of the trigger particle(s) : one Ξ or Ω cascade candidate		Ξ^{\pm}	$/\Omega^{\pm} \left\{ egin{array}{c} { m S} \\ { m B} \end{array} ight.$	Signal (S) Sackground ((B)
2) Identification of all the $\phi(1020)$ candidates (associated particles)		b(1)	$020) \left\{ \begin{array}{c} \mathbf{S} \\ \mathbf{B} \end{array} \right.$	Signal (S) Sackground ((B)
3) Correlation between the trigger	$\phi(10)$]	
particle(s) and the associated			$\phi(1$	020)	
particle(s) and the associated particles			$\phi(1)$	020) B	-
	Ξ^{\pm}/Ω^{\pm}	S	• `	, 	



Counts per 1.00 MeV/c²

Correct for Ξ/Ω background- ϕ pairs




Counts per 1.00 MeV/c²

Correct for Ξ/Ω background- ϕ pairs

• The quantity of interest is :

$$\frac{1}{N_{\text{trig.}}} \frac{\mathrm{d}^2 N_{\phi}}{\mathrm{d}y \mathrm{d}\varphi} = \frac{1}{N_{\text{trig.}}^{\text{raw}}} \frac{\mathrm{d}^2 N_{\phi}(\text{raw})}{\mathrm{d}y \mathrm{d}\varphi} \times (A \times \epsilon \times \text{B.R.})_{\text{trig.}} \times \frac{1}{(A \times \epsilon \times \text{B.R.})_{\phi}}$$

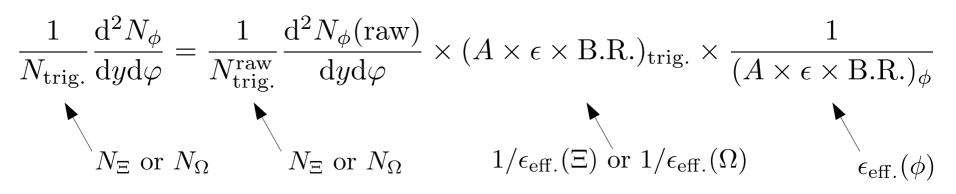
What we are interested in corrected quantity

What we measure raw quantity


• The quantity of interest is :

$$\frac{1}{N_{\text{trig.}}} \frac{\mathrm{d}^2 N_{\phi}}{\mathrm{d}y \mathrm{d}\varphi} = \frac{1}{N_{\text{trig.}}^{\text{raw}}} \frac{\mathrm{d}^2 N_{\phi}(\text{raw})}{\mathrm{d}y \mathrm{d}\varphi} \times (A \times \epsilon \times \text{B.R.})_{\text{trig.}} \times \frac{1}{(A \times \epsilon \times \text{B.R.})_{\phi}}$$

$$N_{\Xi} \text{ or } N_{\Omega} \qquad N_{\Xi} \text{ or } N_{\Omega}$$



• The quantity of interest is :

• The quantity of interest is :

• For each p_T bin, compute acceptance \times efficiency \times B.R. correction factors :

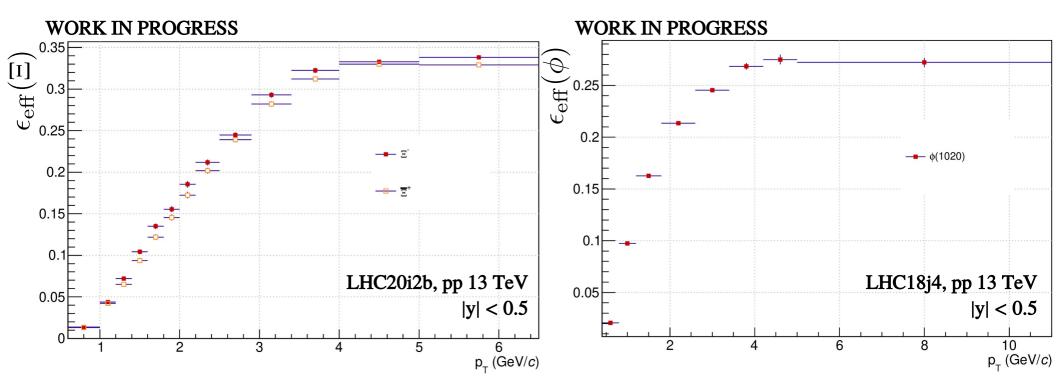
$$\epsilon_{\rm eff}(\Xi) = \frac{N_{\rm reco}(\Xi^-) + N_{\rm reco}(\Xi^+)}{N_{\rm gen}(\Xi^-) + N_{\rm gen}(\Xi^+)} \qquad \epsilon_{\rm eff}(\phi) = \frac{N_{\rm reco}(\phi)}{N_{\rm gen}(\phi)} \quad \left\{ \begin{array}{l} |y_{\rm reco}| < y_{max} \\ |y_{\rm gen}| < y_{max} \end{array} \right.$$

- Numerator = Nbr of reconstructed particle associated to a generated one
 - From the reconstruction, as if it was with data
- Denominator = Nbr of generated particle
 - From the MC truth, perfect information

MC dataset

- Two MC datasets :
 - Pythia 8, tune : Monash 2013
 - 700×10^6 pp collisions at $\sqrt{s} = 13$ TeV (GP) (anchored on all the periods of 2016+17+18)
 - 12×10^6 pp collisions at $\sqrt{s} = 13$ TeV enriched in Ξ and Ω (Only two periods : LHC17j + LHC18i)
- Event Selection :
 - Same as in real data
 - kINT7 = Minimum Bias (MB),
 - Primary vertex $|z_{vtx}| < 10$ cm
- Analysis task : <u>https://github.com/alisw/AliPhysics/blob/master/PWGLF/STRANGENESS/</u> <u>Cascades/Run2/AliAnalysisTaskStrangeCascadesTriggerAODRun2MC</u>

Ξ and $\phi(1020)$ efficiency



E efficiency (Enriched)

$$\epsilon_{\text{eff}}(\Xi) = \frac{N_{\text{reco}}(\Xi^-) + N_{\text{reco}}(\Xi^+)}{N_{\text{gen}}(\Xi^-) + N_{\text{gen}}(\Xi^+)}$$

φ(1020) efficiency (GP)

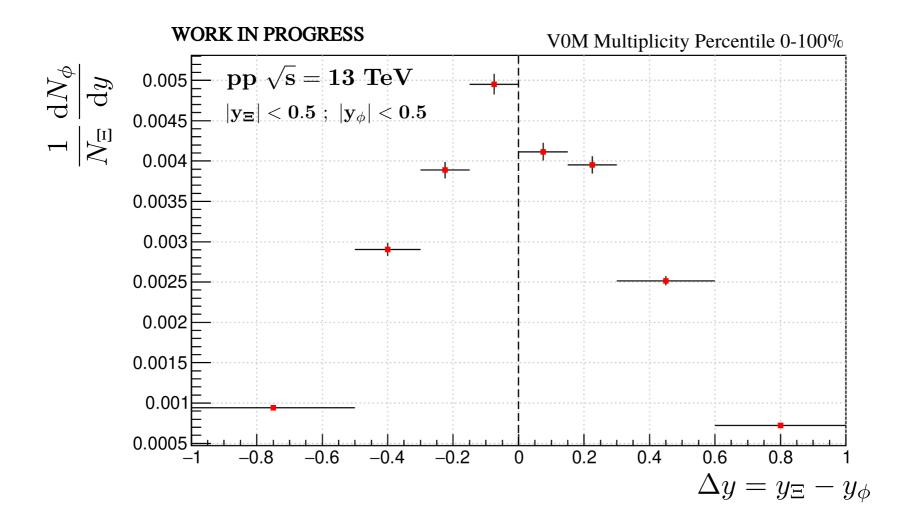
$$\epsilon_{\rm eff}(\phi) = \frac{N_{\rm reco}(\phi)}{N_{\rm gen}(\phi)}$$

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$


III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(sss)$

- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

First-stage results with Ξ ?

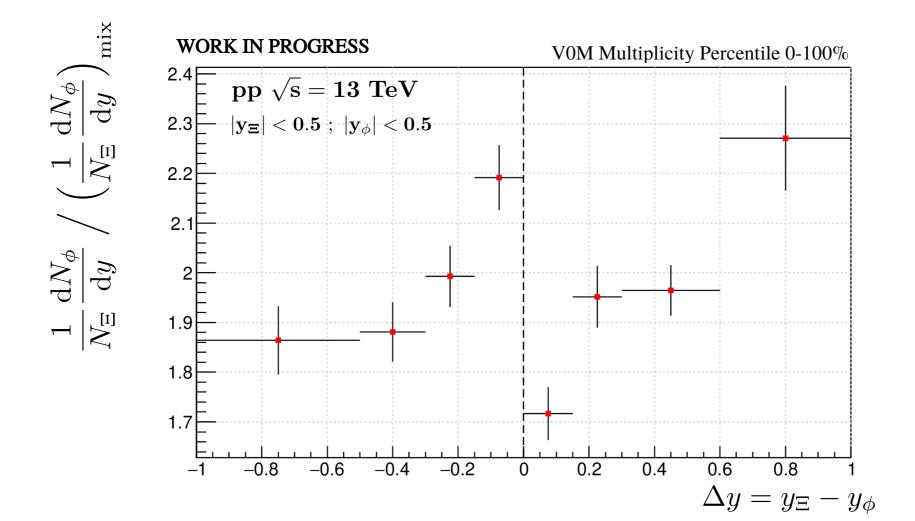
- The yield of $\phi(1020)$ in events containing at least one Ξ , a function of Δy
 - increases as the gap in rapidity wrt the Ξ , Δy , reduces
 - Reaches a maximum at $\Delta y \sim 0$

Pair acceptance correction

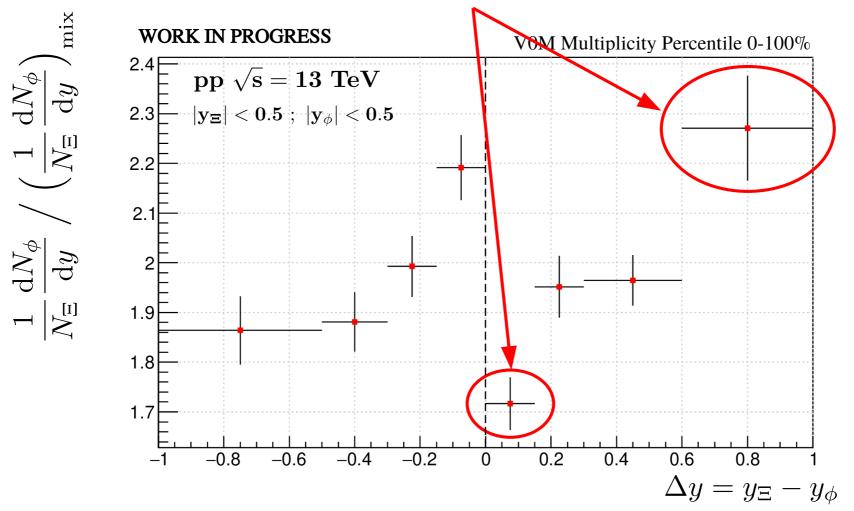
In this analysis, we make correlation between Ξ/Ω and φ(1020)
 BUT not all the pairs are physically correlated !

 \rightarrow we also form pairs of uncorrelated : Ξ/Ω and $\phi(1020)$

- To assess the contribution of uncorrelated pairs of $\Xi/\Omega \phi(1020)$, use an event mixing technique :
 - Same mixing as for the resonances (i.e. same pool of matching events)

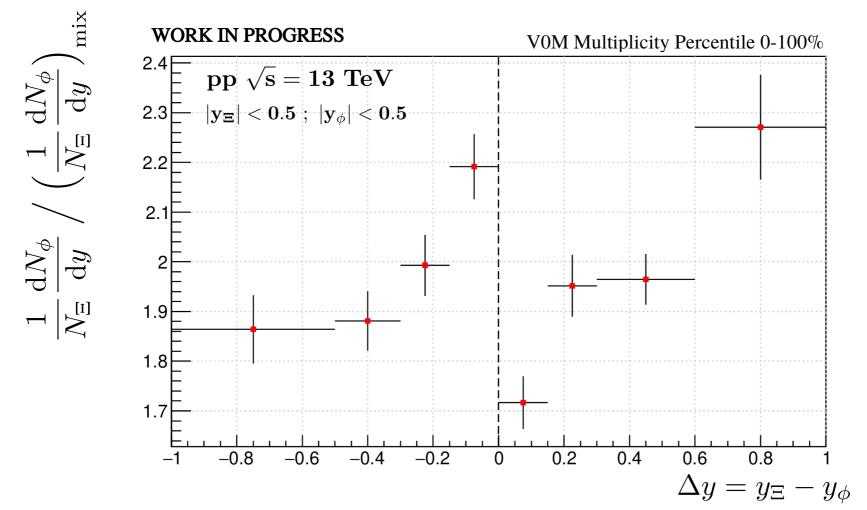

- Redo all the steps presented previously but with a Ξ/Ω and $\phi(1020)$ coming from two separate events
- Divide the previous yield ratio (i.e. $\Xi/\Omega \phi(1020)$ same event) by this distribution (i.e. $\Xi/\Omega - \phi(1020)$ from mixed events)

Corrected results with Ξ

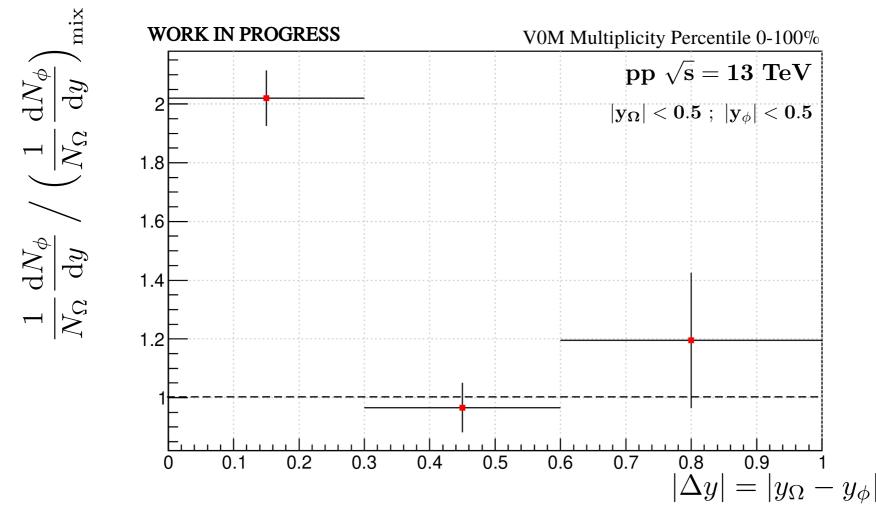

- The corrected yield of $\phi(1020)$ in events containing at least one Ξ , a function of Δy
 - increases as the gap in rapidity wrt the Ξ , Δy , reduces, for negative Δy
 - Reaches a maximum at $\Delta y \sim 0$, for negative Δy

Corrected results with Ξ

ALICE


- The **corrected** yield of $\phi(1020)$ in events containing at least one Ξ , a function of Δy
 - increases as the gap in rapidity wrt the Ξ , Δy , reduces, for negative Δy
 - Reaches a maximum at $\Delta y \sim 0$, for negative Δy
 - Not sure what happened in **these bins**, still under investigation

Corrected results with Ξ


- The corrected yield of $\phi(1020)$ in events containing at least one Ξ , a function of Δy
 - increases as the gap in rapidity wrt the Ξ , Δy , reduces, for negative Δy
 - Reaches a maximum at $\Delta y \sim 0$, for negative Δy
 - \rightarrow When a Ξ is produced, the yield of $\phi(1020)$ is enhanced by almost a factor 2!

Corrected results with Ω

ALICE

- The corrected yield of $\phi(1020)$ in events containing at least one Ω , a function of Δy
 - Is enhanced for $|\Delta y| \sim 0$
 - Compatible with unity at large Δy
 - \rightarrow The yield of $\phi(1020)$ is doubled, when produced close in rapidity to an Ω !

Conclusion

- **Goal**: Measure the yield of $\phi(1020)$, focusing on events with at least one Ω
 - This measurement has been done using Ξ
 - \rightarrow demonstrates the feasibility of such a measurement
 - $\phi(1020)$ production is enhanced when produced close to an Ω
- The analysis is currently at the preliminary stage, very preliminary results
 - Pair acceptance correction \checkmark
 - Efficiency correction
 - Comparison with published individual dN/dp_T MB results ~~
- Next steps :
 - Implement other corrections ($\phi(1020)$ yield down to 0 p_T)
 - Estimate the systematic uncertainties
 - Prepare the tools (Rivet) to make the comparison with MC models

I) Introduction

- 1. Motivations
- 2. The ALICE set-up

II) CPT symmetry test : mass measurements of the Ξ (dss) and Ω (sss)

- 1. Motivations
- 2. Analysis based on real data
- 3. Analysis based on MC data
- 4. Current status for $\Xi(dss)$ and $\Omega(sss)$

III) Correlated production of strangeness : yield ratio measurement of $\phi(s\bar{s})$ to $\Omega(ss\bar{s})$

- 1. Motivations
- 2, Analysis details
- 3. A first glimpse on the complexity of such a measurement
- 4. Preliminary results

IV) Conclusion and other activities

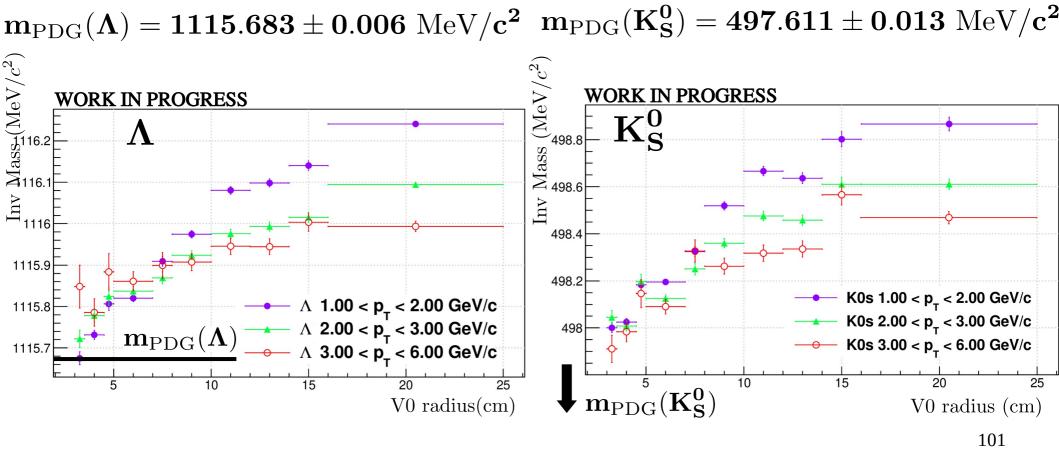
- Service task
 - Pre-alignement of the Inner Tracking System (ITS-2) (December 2021-June 2022)

 \rightarrow Provide the (half-)layers and (half-)staves positions before going for the full alignement with the Millepede method

- Two analysis notes :
 - Testing CPT theorem via the mass differences between anti-hyperons and hyperons with data of LHC run II [<u>link</u>] – Work in progress
 - Study of correlated production of strangeness via the measurement of the yield ratio of Ω and $\phi(1020)$ with pp data of LHC run II [link] Work in progress
- Article
 - Proceedings for Strangeness in Quark Matter 2022
 - \rightarrow Publication by November 2022

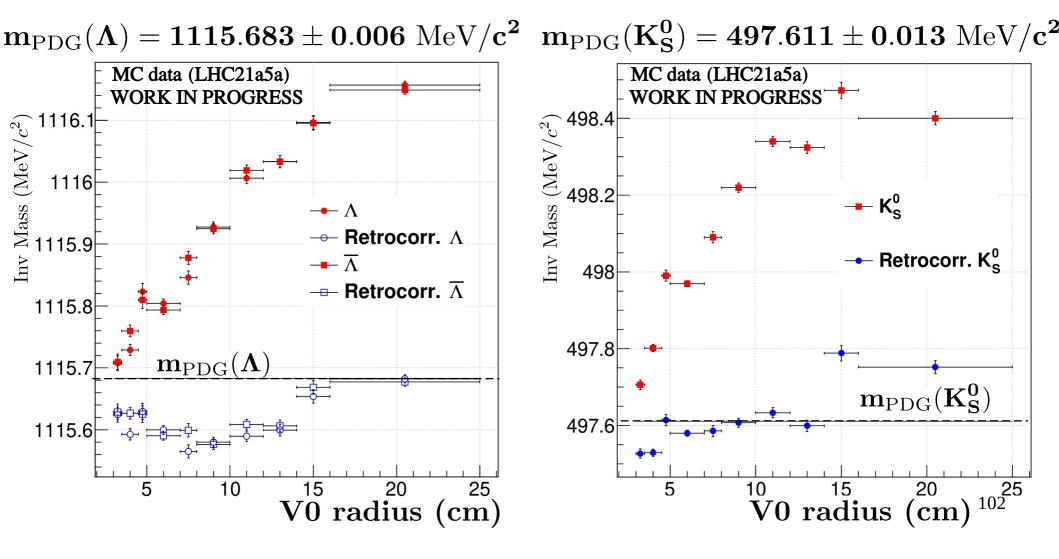
- Regular presentations
 - PWG-LF or PAG-LF every 3-4 months
 - Weekly meeting among international authors (Iouri Belikov, David Chinellato, Antonin Maire, Romain Schotter, Kai Schweda, Georgijs Skorodumovs)
- Presentations at conferences
 - "A multi-differential investigation of strangeness production in pp collisions with ALICE" <u>Strangeness in Quark Matter</u> (Busan, South Korea – June 2022), <u>invitation</u>
 - "CPT Symmetry Test : Mass measurements of the Ξ(dss) and Ω(sss) with pp data collected with the ALICE detector during the LHC run II" <u>Assemblée Générale du GDR QCD</u> (Ile d'Oléron, France Mai 2022), <u>invitation</u>
 - "CPT Symmetry Test : Mass measurements of the $\Xi(dss)$ and $\Omega(sss)$ with pp data collected with the ALICE detector during the LHC run II" <u>Rencontres QGP France</u> (Tours, France Mai 2022)
 - "Correlated production of strangeness : Measurement of the yield ratio of $\Omega(sss)$ and (ss) with pp data of LHC run II" <u>Rencontres QGP France</u> (Etretat, France Juillet 2021)
 - "CPT Symmetry Test : Mass measurements of the $\Xi(dss)$ and $\Omega(sss)$ with pp data collected with the ALICE detector during the LHC run II" <u>Rencontres QGP France</u> (Etretat, France Juillet 2021)

- Communication
 - Etonnante Chimie (IPHC, Strasbourg, France 20 Mai 2022)
- ALICE Collaboration
 - French junior ambassador since the 15/09/2021
- IPHC
 - Soon member of the Bureau Des Doctorants
- Teaching duties : **2 contracts of monitoring** (2 x 64 hours)
 - TD Biophysique (L1 biologie September-December 2020)
 - TP Biophysique (L1 biologie January-April 2021)
 - Introduction à Python (L2 Physique September-November 2021)
 - TP : Programming & Numerical Simulations (M1 Physique September-November 2021)
 - Projects : Programming & Numerical Simulations (M1 Physique January-May 2022)⁹⁸


- Disciplinary trainings : 1/3
 - Introduction to Quantum Science and Technology 2021 \checkmark
 - Lectures Group Theory The 34th International Colloquium on Group Theoretical Methods in Physics – July 2022 X
 - ◆ To be defined... ✗
- Transversal trainings : 53/54h
 - Assemblée générale des doctorants 2020 : 2h
 - Charte de déontologie des métiers de la Recherche : 3h
 - Calcul Parallèle : 21h
 - Econometrics of treatment effects and program evaluation : 9h
 - MOOC Intégrité scientifique dans les métiers de la recherche : 10h
 - Recruitment in academia: how to get a researcher or professor position in France : 1h30
 - Vaccines in a Pandemic: From the Lab to the Jab : 1h30
 - Congrès des doctorants ED182 : 5h

Backup slides

Dependence of the mass shift


- The gap between the extracted mass and the PDG mass seems to depend on :
 - Radial position of the decay point
 - The transverse momentum

Invariant mass Vs radius

- The mass shift is dependent on the radial position of the V0
 - \rightarrow with retrocorrections, we'd expect the trend to be less pronounced

Cascade selections

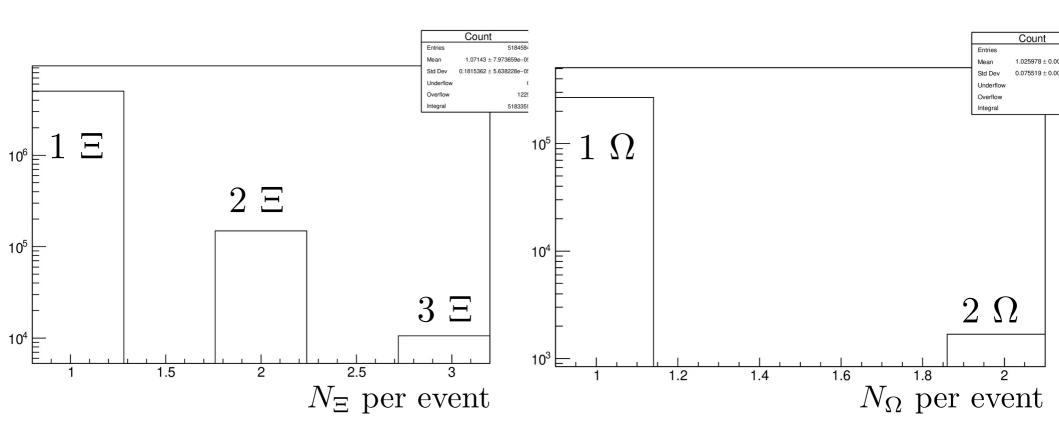
• Ω are reconstructed using topological selections

Ξ/Ω	Cut value
y	< 0.5
рТ	[1;5] GeV/c

ALICE

• V0 selections for Ξ (Ω)

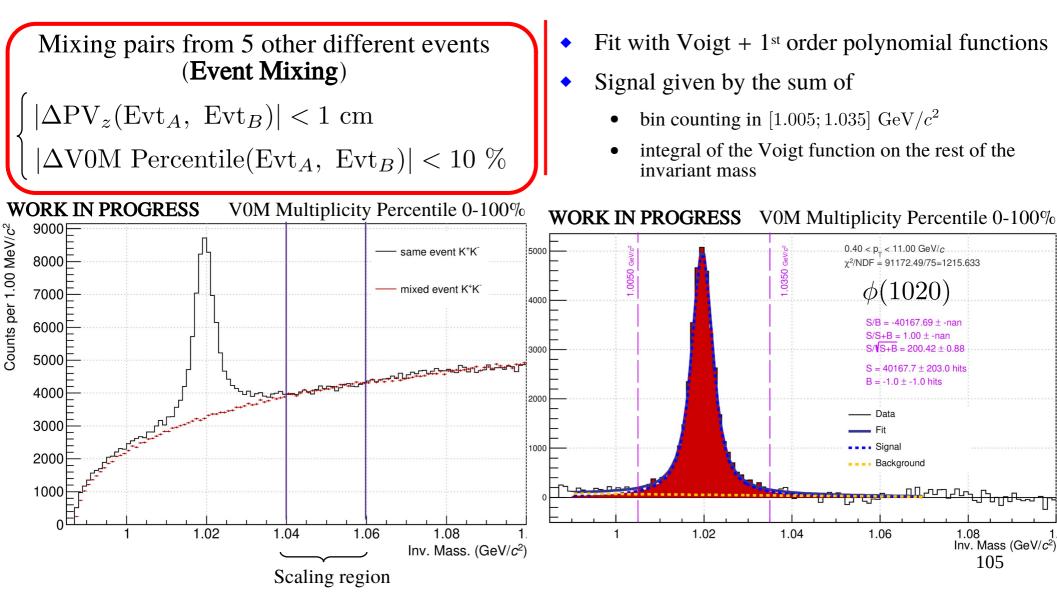
DCA V0 to PV	> 0.07 cm
DCA Pos to PV	> 0.04 (0.03) cm
DCA Neg to PV	> 0.04 (0.03) cm
DCA V0 daughters	< 1.6 cm
V0 Radius	> 1.4 cm
V0 Cos PA	> 0.97
V0 Mass - A Mass	< 0.006 GeV/c ²


• Cascade selections

DCA Bach To PV	> 0.05 cm
DCA Case daughters	< 1.6 cm
Casc Radius	> 0.8 cm
Casc Cos PA	> 0.97
$ Casc Mass(\Xi) - \Xi Mass $	< 0.010 GeV/c2
$ Casc Mass(\Omega) - \Omega Mass $	< 0.010 GeV/c2
Fast detector signal	>= 1 daughter with ITS refit OR TOF signal
Comp. casc rejection (only Ω)	> 0.008 GeV/c2

- Track selections :
 - $\bullet |\eta| < 0.8$
 - TPC refit + has TPC PID
 - TPC Nbr Crossed Rows > 70
 - TPC PID Nsigma < 4

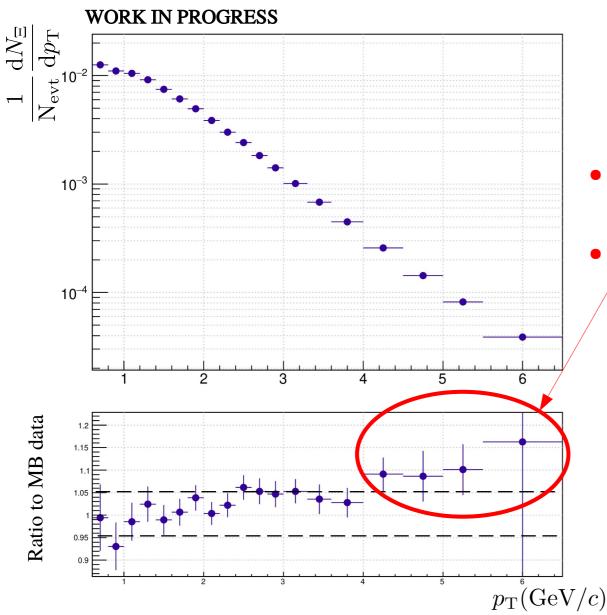
Nbr of cascades per event



• Events with more than 1 Ξ represent ~ 2% of the total amount of events

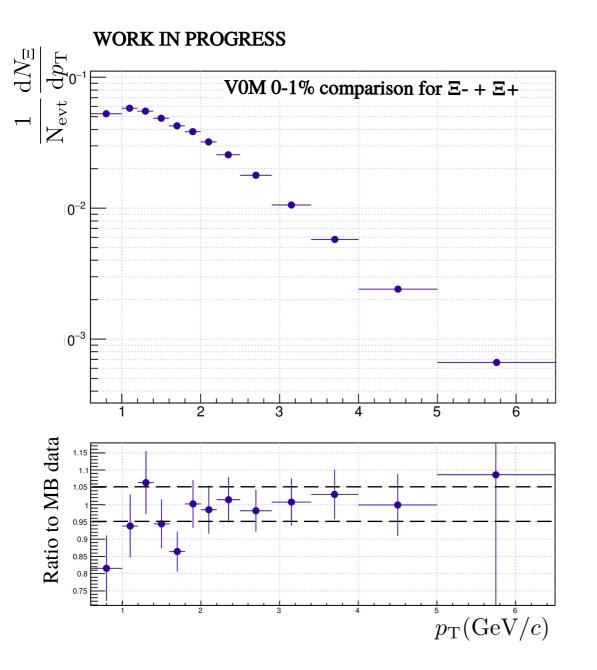
• Events with more than 1 Ω represent ~ 0.5% of the total amount of events

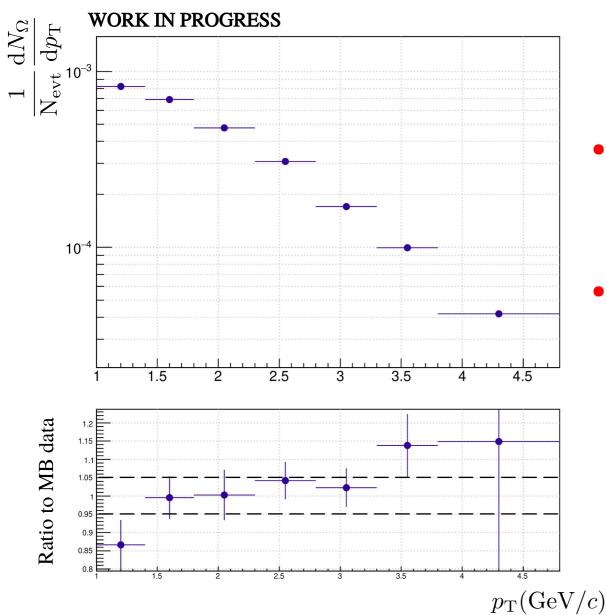
$\phi(1020)$ signal extraction


• Compute background :

ICE

Residual background substraction :


Check : Ξ MB spectra


- Our **corrected** spectra and the MB one are compatible within $\pm 5\%$
- Above \pm 5% at high p_T
 - \rightarrow Also observed in other <u>analysis</u>

Check : Ξ MB spectra high multiplicity

- Our corrected spectra and the MB one are compatible within $\pm 5\%$
- The deviation at high p_T disappears when going to high multiplicity events
 - \rightarrow Also observed in other <u>analysis</u>

Check : Ω MB spectra

- Our corrected spectra and the MB one are compatible within +/- 5% (for most bins)
- There are deviations but this is certainly coming from the official results, that used a more limited data sample in Ω than us

