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Modern cosmology in a nutshell:

1) The universe is expanding.

7 £ el (Hubble, 1920s)
2o 'l."': -‘\ v L

2) It was once hot and
dense, like the inside of the

§ Sun.

3) We can see the (redshifted) glow!
The Cosmic M Icr OWB. ve B aCkg round Boi) Wilson & Arno Penz1as
(Penzias & Wilson, 1964) 1978 Nobel Prize

= acceptance of the “HOT BIG BANG”



Cosmic Microwave Background Surface of Last Scattering

We are at the center

All sky temperature map
projected on a sphere

CMB temperature is a sample of the density structure on a shell cut
through the 380,000 year old Universe

Perturbations are one part in 10,000 at that time — and Gaussian!



Power Spectrum (Blob size hlstogram)
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Power Spectrum (Blob size hlstogram)
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Triumphant/Embarrassing Contemporary Cosmology

CMB and other data fits GR And it implies that the future is
based LCDM model beautifully ~ Funaway expansion...

— but it demands that 96% of
the Universe is invisible to us
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Also it doesn’t explain horizon/flatness etc...



The Horizon Problem

Our cosmic particle horizon

Cosmic particle horizon for A|Cosmic particle horizon for B

Radiation from A takes Radiation from B takes
14 billion years to reach us 14 billion years to reach us

How did points A and B “know” to be at the same temperature in the
distant past when they had never been in causal contact?

(They still aren’t today!)



Inflation solves the Flatness Problem

a |
N2

e

S\~

Inflation...

If you take some curved space and blow it up enough pretty soon it
is no longer curved on a local scale — where “local scale” here means
our entire observable Universe!



Radius of the Visible Universe

History of the Universe

Inflation posits a pre-phase of
exponential expansion

Fluctuations

<« Quantum

Inflation
Neutral Hydrogen Forms

0 107325 1us 0.01s 3 min 380,000 yrs

Age of the Universe
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13.8 Billion yrs



What Does Inflation Do For Us?

Solves the horizon problem:
Why is the CMB nearly uniform?
How do apparently causally
disconnected regions of space
get set to the same
temperature?

Solves the flatness problem:
Why is the net spatial curvature
so close to zero?

Explains the initial perturbations:
Why Gaussian with close to flat
power law spectrum? (n~1)

Solves the monopole problem:
Why do we not observe
magnetic monopoles in the
Universe today?

A volume much larger than our
entire observable universe today
was once a caussally connected
sub atomic speck.

Any initial spatial curvature is
diluted away to undetectabilty by
the hyper expansion.

Equal amounts of perturbations
are injected by quantum
fluctuations at each step in the
exponential expansion.

Monopoles are diluted away to
undetectability.



Inflation is controversial

Inflationary Paradigm after Planck 2013

Alan H. Guth,! David I. Kaiser,! and Yasunori Nomura?

'Center for Theoretical Physics, Laboratory for Nuclear Science, and Departm
Massachusetts Institute of Technology, Cambridge, MA 02139, U
“Berkeley Center for Theoretical Physics, Department of Physics
and Theoretical Physics Group, Lawrence Berkeley National Laborai
University of California, Berkeley, CA 94720, USA
(Dated: December 29, 2013, revised January 13, 2014)

arxiv/1312.7619

Inflationary schism after Planck2013

Anna Ijjas,!*? Paul J. Steinhardt,® and Abraham Loeb*
! Maz-Planck-Institute for Gravitational Physics (Albert- Einstein-Institute), 14476 P&

? Rutgers University, New Brunswick, NJ 08901, USA —

* Department of Physics and Princeton Center for Theoretical Scienc
Princeton University, Princeton, NJ 08544, USA

1 Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138,

(Dated: March 14, 2014)
arxiv/1402.6980



History of the Universe

13.8 Billion yrs
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Inflation
Generates

Two Types of <
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Radius of the Visible Universe
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History of the Universe
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CMB polarization:
arises at last scattering
from local radiation quadrupole




CMB Polarization, B-modes and r

> The CMB is partially polarized (due to local radiation quadrupoles at
last scattering)

> Any polarization pattern can be decomposed into E-modes (gradient
modes) and B-modes (curl modes)

> Basic LCDM makes only E-modes at last scattering — although
lensing deflections in flight produce a bit of a B-mode

> Primordial gravitational waves produce both E-modes and B-modes —
but best to look for the B-modes since most distinct there

> Theory gives us a good template shape for the gravitational wave
signal — but it does not tell us the amplitude

> The amplitude is parameterized by a single number r

> A wide range of inflation theories exist — the simplest are already
ruled out — more complex ones can produce r which is undetectably
small

> The experimental mission is to obtain the best possible sensitivity to r

> |If we can detect r we determine the energy scale of inflation — if not
we can rule out additional inflationary models



CMB Polarization, B-modes and r

> The CMB is partially polarized (due to local radiation quadrupoles at
last scattering)

> Any polarization pattern can be decomposed into E-modes (gradient
modes) and B-modes (curl modes)

> Basic LCDM makes only E-modes at last scattering — although
lensing deflections in flight produce a bit of a B-mode

> Primordial gravitational waves produce both E-modes and B-modes —
but best to look for the B-modes since most distinct there

> Theory gives us a good template shape for the gravitational wave
signal — but it does not tell us the amplitude

> The amplitude is parameterized by a single number r

> A wide range of inflation theorie Warning: It's a bit like the search
ruled out — more complex ones| ¢4, proton decay — a well
small , L motivated physics target to look
> The experimental mission IS 0 ¢ "1, 4 4heories can be adjusted

> |f we can detect r we determine t e th itud bitraril
we can rule out additional inflat| *© mﬁ‘ € the amplituae aroitrarily
small...
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CMB Polarization power spectra

Multipole |

In standard ACDM only E-modes are
present at last scattering

= During propagation
gy some of the E-modes

® are confused into B-
_ modes by lensing

Inflationary gravitational waves are unique
source of intrinsic B-modes
— peaking at =80 : few degree scales



CMB space missions map the full sky
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Ground based telescopes map part of the sky more deeply
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BICEP/Keck Basic Experimental Strategy

— Small aperture telescopes (cheap, fast, low systematics)
— Target the 2 degree peak of the PGW B-mode

— Integrate continuously from South Pole

— Observe order 1% patch of sky (smaller is actually better!)
— Scan and pair difference modulation



Unfortunately we are in a galaxy
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When CMB people talk about “foregrounds |t IS
analogous to what HEP people call “backgrounds”

— something which gets in the way of the thing one
IS trying to measure.




Polarized Foreground Contamination from Our Galaxy

At low At high
frequency Sweetest frequency dust
synchrotron spot contamination

contamination
\ b

—
|

cC ].02 B NI 1 full sky
= ol | Pick a cleaner
£ 10 | b>10 tch of sk
g _ : | bego | Patch O Sky
o) ; b>50
Q 1072} i 1> v
HCS I Best sky
g :
8 10—4_ f \.b i
= |
< r=0.01 :

107° e N

10 100 1000

. (Plot from Dunkley et al
Observing Frequency (GHz) arxiv/0811.3915)



Polarized Foreground Contamination from Our Galaxy

At low At high
frequency Sweetest frequency dust
synchrotron spot contamination

contamination
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Since the different components of
the sky pattern have different
frequency dependencies one can
separate them by making maps at

| multiple frequencies — and probe

deeper for an inflation signal




The BICEP/Keck Telescopes

Telescope as compact as "
possible while still having the

angular resolution to observe
degree-scale features.

On-axis, refractive optics
allow the entire telescope to
rotate around boresight for

Nylon filter

Optics tube

Lens

polarization modulation. 12m Nb magnetic shield
Focal plane assembly

Pulse tube cooler cools the Passive thermal filter
optical elements to 4 K.

: . ot Flexible heat straps
3-stage helium sorption E X P
refrigerator further cools the S Fridge mounting bracket
detectors to 0.3 K. £ Refrigerator

@)

Camera plate




Mass-produced Superconducting Detectors
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BICEP/Keck Band Passes

The dry South Pole
atmosphere provides

: Typical South Pole atmospheric transmissio
excellent observing

/.

conditions most of the year. 1F /
The approx. 30% fractional _ 0.8}
bandpasses fit within % 06l
atmospheric transmission =
windows straddled by S 04
oxygen and water lines. =
0.2
In these windows, the 0 \

atmosphere is quite

: 100 150 200 0 300
transparent to microwaves.

equency [GHZz]

The detector passbands are

defined by a filter printed

directly onto the focal plane

wafers. choices of response



Journey to the South Pole

Minneapolis ->California -> New Zealand -> McMurdo -> South Pole




Antarctic Continent

South Cutaway view of ice sheet

Ronne
ice Shelf

Winson Meassif
£ 14

West

Antarctica

East

below Antarctica
sea leve/

Larger then the US — Ice sheet 3000 metres thick!






Christchurch New Zealand — Clothing Warehouse
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Big Program!




Arrival in Antarctica




McMurdo — base on the coast




On to the Pole — over the Transantarctic Mountains




Unloading at Pole




The Actual South Pole

Geographic South Pole

Roald Amundsen
December 14 1911
“So we arrived and
were able to plant our
flag at the geographical
South Pole.” /
elev \NS




Nothing Out There!




Why do this at the Pole?

10m South Pole Telescope

High and dry — excellent atmospheric transmission

On Earth’s rotational axis - One day/night cycle per year
— Long night makes for great quality data

Good support infrastructure — power, cargo, data comm
Food and accommodation provided
Even Tuesday night bingo...




Focal Plane Telescope and Mount

Beams on Sky

Stage 2 Stage 3

BICEP2 Keck Array BICEP3 BICEP Array
(2010-2012) (2012-2019) (2016-present) (2020-present)

5 0 5 5 0 5 -10 -5 0 5 10 -10 0 10
Degrees on sky Degrees on sky Degrees on sky Degrees on sky






Raw Data - Perfect Weather

Time 50 mins

>
elnod 1 Run 20120622G01_dk293, scan block 1; Bx: 0
%55 #f 160 | | | f\ | f\ Telescope Movement
A '( I
il T
545 , L
0 5 0.1 0.2 03 0.4 0.5 06 0.7
150GHz 107° p0 filt; pair—sum
100 20 T T T T T T T .
" ol Sum of detector pairs|
S R e A
50 -10- -
100, 5 20 snmmm?—:‘“ WWWM(?; — 03 02 05 05 07
150GHz 107 pO filt; pair—diff
100 20 . . ; — . | ——
" ol Difference of detector pairs.
0 odnidsnsatast s s e b e s S R e
50 ~10}- -
100, 5 20 0?1 0?2 013 0?4 ofs 016 0f7
x107°

> Cover the whole field in 60 such scansets
then start over at new boresight rotation

15 o 206 rgl pairs have no daty plofied ater cuts ‘ound?’

elnod 2
55.5 .
© 55ﬁ\\ f"
54.5 \/
078  0.785
150GHz
100
50
O—N
-50
—100—73 0.735
150GHz
100
50
0
-50
-100 0.78 0.785

> Scanning modulates the CMB
signal to freqs <4 Hz



57.2
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56.6
56.4
56.2
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Raw Data - Worse Weather

Time 50 mins

elnod 1 Run 20120622D01_dk293, scan block 1; Bx: 0

(=]

(=]

(=]

o Telescope Movement 57.2 /\
\ 57 / \
3 N - / '
s 56.41 1\ /
\/ . 56.2{ )

5 0.7 0.78 0.785
150GHzx 107 pO filt: par sum 150GHz
20 100
ok Sum of detector pairs] _| _
owwwww V\ WA \MWWWMM A W\Mf %
10 -50 "\/
5 ncisiest plotted pair- um(m‘gc 2): 02341 (0355 357 02324 02372
5 -0 0.1 2 03 04 05 06 007 oss
150GHz« 107 pO filt; pair—diff —
20 : . | — T T T ; 100
ol Difference of detector pairs|
0 jnunm el e e A R e Y N AR B BN R R s F s Rl SR N S SR S R R e it 0
10 4 -0
5 -0 0#1 0.12 013 0?4 0#5 0.16 077 007 oss
x10 / 20 ol 206 rgl pairs have no dats plotied ater cuts 'ound?’ \
> Scanning over lumpy atmosphere > Pair difference still clean

— “clouds” — atmosphere is unpolarized
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95 GHz T signal ' 95 GHz T noise

.

BK18
95GHZz
Maps

95 GHz.Q noise

Declination [deg.]
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BK18
150GHz
Maps

150 GHz T signal

150 GHz T noise
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220 GHz T signal ' A 220 GHz T noise

BK18
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Multicomponent parametric likelihood analysis

Take the joint likelihood of all the spectra simultaneously
vs. model for BB that is the ACDM lensing expectation +
[/ parameter foreground model + r

foreground model = dust + synchrotron

! !

Ayt A amplitudes @ 1=80

synch

frequency spectral
Bdust Bsynch indices
spatial spectral

a as nch : :
dust y indices

NS

dust/synch spatial

correlation
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Per bandpower CMB component extraction
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Map Sensitivity [uK-arcmin]
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High resolution maps /

Can be used to reconstruct the
lensing deflection map...

...which can then be used to
calculate the lensing signal
enabling a deeper search for
inflationary gravitational
waves



Latest Generation Experiment “BICEP Array™
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2018-19: Built New Telescope at UMN
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Working in the show







Feb 2020 - the finished product




Summary

»The Universe is expanding — it was once a hot dense “fireball”.

»We understand its development all the way back to a very high
energy state.

» The theory of “Inflation” says that our entire observable Universe
today all came from a single sub-atomic spec in a hyper expansion
lasting a tiny fraction of a second

»If this “Inflation” really happened it will have made a background
of gravitational waves

»We may be able to detect the imprint of these by measuring
the polarization pattern of the Cosmic Microwave Background
— if we can build a sensitive enough telescope

»BICEP/Keck set the world’s best upper limits to date
ruling out multiple previously popular classes of
inflationary models (monomial and natural)

»And the search goes on with bigger and better
experiments...



CMB-S4| Stage IV CMB experiment: CMB-S4

Next Generation CMB Experiment

* CMB-54: a next generation ground-based program building on CMB stage
2 & 3 projects to pursue inflation, neutrino properties, dark energy and
new discoveries.

* Targeting to deploy O(500,000) detectors spanning 30 - 300 GHz
using multiple telescopes and sites to map most of the sky to provide
sensitivity to cross critical science thresholds.

Building for Discovery

* Multi-agency effort (DOE & NSF). Complementary
with balloon and space-based instruments.

* Broad participation of the US CMB community,
including the existing NSF CMB groups, DOE
National Labs and the High Energy Physics
community.

Recommended
by P5 & NRC

* US. led program; international partnerships expected. Antarctic reports

A science driven program combining the deep CMB experience of
the university groups with the expertise and resources at the national labs.



