GRAAL meeting: MINERVA RF/Cryo modelling for C&C optimization studies

ACCELERATORS and CRYOGENIC SYSTEMS Parc Orsay Université – 21 rue Jean Rostand 91893 Orsay Cedex

Laboratoire de Physique des 2 Infinis Irène Joliot-Curie IJCLab - UMR9012 - Bât. 100 - 15 rue Georges Clémenceau 91405 Orsay cedex

12/05/2022

C. LHOMME

- Application of the model by project phase
- Brainstorming results
- On-going C&C-oriented studies \rightarrow 5 illustrations

\rightarrow Need for a model which follows the project cycle

GRAAL meeting 12/05/2022

Brainstorming result = an organized mess !

- RF and cryo strongly coupled → modelling them together is necessary to check the "cohabitation" !
- But those processes have much different characteristic times → find a way to save computing time

1. Implementation of RF models

- Simulink models of the cavity (same than FPGA HIL studies)
 - Cavity envelope equation
 - Closed loop on E_{acc} and ϕ_s
 - Outputs $P_{cav} / P_{inc} / P_{ref} / \phi_g$
 - As a function of Δf , Q_0 , E_{acc} , ϕ_s
- Detuning models
 - Piezo and motor tuner $\Delta f = f$ (command)
 - He bath pressure: $\Delta f = f(P)$
 - Lorenz force: $\Delta f = f(E_{acc})$
 - Piezo dynamic TF

- The transmitted signals from the cavity (Vti, Vtq)
- The cavity detuning error ($\phi_g \phi_s$)

*LLRF Lecture Part 3.1 S. Simrock, Z. Geng - ITER / PSI ** Thesis F. Bouly 2011

- Joules & dielectric heat loads calculated from:
 - RF field imported from EM code (CST, HFSS)
 - Material electrical properties = f(T)
- To do
 - Implement a simple RF field model to cover all cases without an EM code
 - As a function of $\mathsf{P}_{\mathsf{inc}},\,\mathsf{P}_{\mathsf{ref}}$ from the cavity model

12/05/2022

2. Support to prototyping phases

GRAAL meeting 12/05/2022

- testQVB & QM heat load analysis
- Pointing out the need for additional instrumentation

Main problem

- The PLC code developer needs the process hardware asap for debugging
 - Sequence virtual commissioning
 - HMI development
 - PID tuning
- Idea: the model is connected to the PLC and mimics the process
- Step 1, done on the prototype in CD
 - PID gain pre-tuned on Simscape and used as start values in TIA Portal
 - Need similar PID controller architecture Model VS TIA Portal

		Simscape pre-tuning		Online tuned	
Actuator	Sensor	Р	Ti	Р	Ti
CV01	LT01	0,1	50	0,5	1
CV04	LT050	0,1	50	0,5	1
CV601	TT620	-0,5	1666	-0,35	3000
CV651	TT651	-0,5	1666	-0,5	1666
CV06	PT01	-120	60	-200	8
MKS	PT50/51	From MKS conditioner			

• Step 2, on-going

- Originally, Simscape is controlled by Simulink (sequences and feedback loops) → control from PLC instead
- Hardware or Software in the loop approach (Real or simulated PLC)
- Need to run in real time
- Thorough work to connect all I/O

WinCC HMI proto

PLCsim

- Context
 - The bibliographic studies and REX points toward cryogenic pressure regulation tolerances about +/- 5 mbar
 - Often based on what is achievable, not what is required
- Problematic
 - In principle, on MINERVA, the piezo can compensate for 200 mbar pressure deviation → no stress at all ?
 - Not safe nor feasible \rightarrow there should be a tolerance anyway !
 - \rightarrow Suppose that the piezo will not compensate for the pressure oscillations
- Approach
 - Set a criteria on the maximum acceptable cavity detuning
 - Translate it into pressure regulation tolerances

- DSBT and GANIL teams demonstrated the advantage of an LQ over a double PID
 - In the context of a 4K LINAC
- → Same conclusion in the case of a 30 mbar bath with an additional process (subcooling + expansion) ?
- Abdelouadoud, preparing the Centrale-Supélec **ATSI Master** is taking the challenge !
- Good point: compared to SPIRAL2, these automation studies are starting at an earlier project phase

MOTTO

- Cryogenic availability
- Minimize the calibration work
- Minimize the electrical consumption

