Development of a fast Cherenkov detector dedicated to Prompt Gamma Time Imaging

Maxime Jacquet On the behalf of the TIARA collaboration

PG monitoring of the proton therapy

Proton therapy :

High ballistic precision

[©] Uncertainties on the proton range

→ PG monitoring

PG features :

- $\langle T_{PG} \rangle$ < 1 ps
- 0.01 PG.proton⁻¹.cm⁻¹
- Spatially correlated with the proton range

Time-based PG monitoring

Prompt Gamma Time Imaging (PGTI)

Proton range estimation from the exclusive measurement of particles Time-Of-Flight (TOF)

1) Diamond-based beam monitor

2) Time of flight Imaging ARrAy (TIARA)

- 30 ~ 1 cm³ PbF₂ crystals read-out by SiPMs

Vertex reconstruction: Inverse problem resolution

•
$$T_{\text{Start}} - T_{\text{Stop}} = T_{\text{proton}}(\mathbf{r}_{\text{PG}}) + T_{\text{PG}}(\mathbf{r}_{\text{PG}}, \mathbf{r}_{\text{D}})$$

• Allows combining all PG detector responses

Proton irradiation: S2C2 Proteus One

Time structure of the beam

Proton beam irradiation of the beam monitor

Proteus One operating modes

Hypothesis: **0.5%** of detection efficiency for 30 block detectors at 15 cm from the FOV center.

	Single Proton Regime (1p/µ-bunch)	Typical intensity (1600p/µ-bunch)	Maximum intensity (3×10⁵p/µ-bunch)
Beam Monitor	Proton tagging	Micro-bunch tagging	-
TIARA block detector	1.1 kHz	1.7 MHz	311 MHz
CTR (FWHM)	235 ps	~ 2.35 ns	Event counting

	Method	CTR (FWHM)	Number of protons	Nb of PGs	2σ sensitivity (mm)
Longitudinal shiftPGPGCenter of	PGTI	235 ps	10 ⁷	3×10 ³	3
	PGTI		10 ⁸	3×104	1
	PGTI	2.35 ns	10 ⁹	3×10 ⁵	2
	Center of Gravity	-	10 ⁸	3×104	4
Lateral shift	Center of Gravity	-	10 ⁸	3×104	2

	Method	CTR (FWHM)	Number of protons	Nb of PGs	2σ sensitivity (mm)
$\mathbf{r}_{\rm COG} = \frac{1}{N}$	$\times \sum_{i=1}^{N_{Det}} \mathbf{r}_{\mathrm{PG}_i}$	$ imes n_i$ ns	10 Nomi Even	3×10 inal into t count	3 ensity: ing 2
Longitudinal shift	Center of Gravity	-	10 ⁸	3×104	4
Lateral shift	Center of Gravity	-	10 ⁸	3×104	2

- Single proton regime
- Beam monitor :
 - 4.5×4.5 mm²
 - Time resolution of ~ 160 ps FWHM
- 2 mm diameter collimated beam

Experimental PGTI sensitivity

- Target shift within [0,1] cm
- 600 PG detected

Distribution of the reconstructed PG vertices

Experimental PGTI sensitivity

4 mm of sensitivity at 2σ with **only 600 PG** detected

Distribution of the reconstructed PG vertices

PGTI sensitivity

^{1.0}7/14

0.8

Summary of detection system performances

	Data type	Proton energy (MeV)	CTR (FWHM)	Number of protons	Nb of PGs	2σ sensitivity (mm)
Longitudinal shift	Simulation	100 MeV	235 ps	107	3×10 ³	3
	Experiment	63 MeV	324 ps	-	600	4

Summary of detection system performances

	Data type	Proton energy (MeV)	CTR (FWHM)	Number of protons	Nb of PGs	2σ sensitivity (mm)
Longitudinal shift	Simulation	100 MeV	235 ps	107	3×10 ³	3
	Experiment	63 MeV	324 ps	-	600	4

Electronic read-out improvement

Cates et al 2018 Phys. Med. Biol.

CTR diamond-PG detector version 2

CTR diamond-PG detector version 1

- ~ 4 protons/micro-bunch
- Beam monitor
 - 4.5×4.5 mm²
 - Time resolution of ~ 300 ps FWHM
- Gaussian beam of 4.2 mm σ width

- ~ 4 protons/micro-bunch
- Beam monitor
 - 4.5×4.5 mm²
 - Time resolution of ~ 300 ps FWHM
- Gaussian beam of 4.2 mm σ width

Micro-bunch tagging: ~ 2.7 ns FWHM of time resolution

PG Timing with 2 identical detectors in non symmetric positions

PG detectors PG timing spectrum

11/14

- A specific detector position biases the measured PG vertex profile
- TIARA modules are position sensitive
 - 3D coverage + combination of detector responses (Prompt-Gamma Time Imaging)

Proteus One operating modes: Results

	Single Proton Regime (1p/µ-bunch)	Typical intensity (1600p/µ-bunch)	Maximum intensity (3×10⁵p/µ-bunch)
Beam Monitor	Proton tagging	Micro-bunch tagging	-
TIARA block detector	1.1 kHz	1.7 MHz	311 MHz
Targeted CTR (FWHM)	235 ps	~ 2.35 ns	Event counting (COG)
Experimental CTR (FWHM)	360 ps	2.7 ns	-
Simulation sensitivity	3 mm (10 ⁷ protons)	2 mm (10 ⁹ protons)	_

Proteus One operating modes: Results

	Single Proton Regime (1p/µ-bunch)	Typical intensity (1600p/μ-bunch)	Maximum intensity (3×10⁵p/µ-bunch)
Beam Monitor	Proton tagging	Micro-bunch tagging	-
TIARA block detector	1.1 kHz	1.7 MHz	311 MHz
Targeted CTR (FWHM)	235 ps	~ 2.35 ns	Event counting (COG)
Experimental CTR (FWHM)	360 ps	2.7 ns	-
Simulation sensitivity	3 mm (10 ⁷ protons)	2 mm (10 ⁹ protons)	-

Event counting regime at 300 MHz : ~ one PG pulse every 3.3 ns 12/14

Intrinsic dead time of a Cherenkov-based PG detector

- Cherenkov emission physical time scale ~ ps
- **0.3 %** of triggered SiPM microcells per event
- Dead time mostly defined by the signal shape

TIARA block detector can already sustain a ~ 150 MHz PG detection rate

Conclusion

• Development of a **reconstruction algorithm** to combine the response of multiple detectors.

	Single Proton Regime (1p/µ-bunch)	Typical intensity (1600p/µ-bunch)	Maximum intensity (3×10⁵p/µ-bunch)
Beam Monitor	Proton tagging	Micro-bunch tagging	-
TIARA detection system	1.1 kHz	1.7 MHz	311 MHz
Experimental CTR (FWHM)	360 ps	2.7 ns	Event counting (COG)

- Creation of a high sensitivity PG detector
 - 4 mm sensitivity on proton range with 600 PG detected and 320 ps FWHM time resolution
 - ~ ~ 360 ps FWHM of CTR at clinical beam energy
 - Ultra fast-timing acquisition → Requirement to use a reconstruction strategy

References

Jacquet M et al 2021 Phys. Med. Biol. 66 135003
 A time-of-flight-based reconstruction for real-time prompt-gamma imaging in proton therapy
 https://doi.org/10.1088/1361-6560/ac03ca

• Marcatili S et al 2020 Phys. Med. Biol. 65 245033

Ultra-fast prompt gamma detection in single proton counting regime for range monitoring in particle therapy

https://doi.org/10.1088/1361-6560/ab7a6c