

Novel PET with Opaque Liquid

Adrien Hourlier,

on behalf of the LPET consortium 2022/06/14

Full body / Organ dedicated PETs

CareMiBrain (Oncovision)

L. Caldeira, et al., "Reconstruction of PET Data Acquired with F.C. David, et al., IEEE Trans. Med. Imag., the BrainPET using STIR," IEEE NSS/MIC, 2012.

- Brain, prostate, breast, heart...
- Closer to region of interest : increased detection efficiency
- Dedicated segmentation / improved spatial resolution
- Improved contrast by reduction of noise from other organs

Full body PET : Explorer (uExplorer, PennPET Explorer)

- Increased detection efficiency by increased collection solid angle
- Same total acquisition time : better image quality
- Diagnostic-worthy images in 1 min!
- Dynamical studies of full-body biodistribution at the second level

DOI 10.1109/TMI.2018.2799619, 2018.

Full body / Organ dedicated PETs

CareMiBrain (Oncovision)

L. Caldeira, et al., "Reconstruction of PET Data Acquired with F.C. David, et al., IEEE Trans. Med. Imag., the BrainPET using STIR," IEEE NSS/MIC, 2012.

- Brain, prostate, breast, heart...
- Closer to region of interest : increased detection efficiency
- Dedicated segmentation / improved spatial resolution
- Improved contrast by reduction of noise from other organs

Full body PET : Explorer (uExplorer, PennPET Explorer)

- Increased detection efficiency by increased collection solid angle
- Same total acquisition time : better image quality
- Diagnostic-worthy images in 1 min!
- Dynamical studies of full-body biodistribution at the second level

DOI 10.1109/TMI.2018.2799619, 2018.

- Change isotopes $\beta^+ \Rightarrow (\beta^+, \gamma)$ - ${}^{44}Sc \rightarrow {}^{44}Ca^* e^+ \nu_e$ $\downarrow \rightarrow {}^{44}Ca^+ + \gamma(1.157MeV)$

-

LiquidO Technology

Objective : move away from the segmented LYSO:Ce crystals

Identify each y interaction point -

- Fine segmentation of light detector
- Slow down light propagation so that 2 interactions stay resolved longer

LiquidO: -

- **New** : first proposed in 2019 (A. Cabrera, CERN seminar) -
- Opaque organic scintillator
- Stochastic light trapping through Mie scattering
- Self-segmentation without losses due to mechanical segmentation

LiquidO Technology

Objective : move away from the segmented LYSO:Ce crystals

Identify each y interaction point

- Fine segmentation of light detector
- Slow down light propagation so that 2 interactions stay resolved longer

LiquidO: -

- **New** : first proposed in 2019 (A. Cabrera, CERN seminar)
- Opaque organic scintillator
- Stochastic light trapping through Mie scattering
- Self-segmentation without losses due to mechanical segmentation

Liqui

LiquidO Technology

Objective : move away from the segmented LYSO:Ce crystals

Identify each y interaction point -

- Fine segmentation of light detector
- Slow down light propagation so that 2 interactions stay resolved longer

LiquidO: -

- **New** : first proposed in 2019 (A. Cabrera, CERN seminar)
- Opaque organic scintillator
- Stochastic light trapping through Mie scattering
- Self-segmentation without losses due to mechanical segmentation

Liquid

-)

-)

A. Cabrera et al. Communications Physics 4, 273 (2021)

A. Cabrera et al. Communications Physics 4, 273 (2021)

A. Cabrera et al. Communications Physics 4, 273 (2021)

L-PET working principle

Inner tracker

- LiquidO -
- axial optical fibers \Rightarrow possible whole body PET -
- Si-PM + fast digitizer readout (10 GS/s) _

L-PET working principle

Inner tracker

- LiquidO
- axial optical fibers \Rightarrow possible whole body PET
- Si-PM + fast digitizer readout (10 GS/s)

Outer calorimeter

- 'vintage' liquid scintillator + PMT
- ensure full γ calorimetry at the MeV scale

L-PET working principle

Inner tracker

- LiquidO
- axial optical fibers \Rightarrow possible whole body PET
- Si-PM + fast digitizer readout (10 GS/s) _

Outer calorimeter

- 'vintage' liquid scintillator + PMT
- ensure full γ calorimetry at the MeV scale

ANR funding

- test feasibility of the new technology -
- test gamma tracking capabilities
- test image reconstruction -
- validate simulations & physics -
- Establish requirements for future prototypes -

an

"Traditional" PET

- Most commonly : light barycenter in a scintillator crystal module (Anger logic)
- Lack of Depth Of Interaction information : • interaction point degeneracy within the crystal ~cm
- Coincidence time resolution ~250 ps •

"Traditional" PET

- Most commonly : light barycenter in a scintillator crystal module (Anger logic)
- Lack of Depth Of Interaction information : • interaction point degeneracy within the crystal ~cm
- Coincidence time resolution ~250 ps •

"Traditional" PET

- Most commonly : light barycenter in a scintillator crystal module (Anger logic)
- Lack of Depth Of Interaction information : • interaction point degeneracy within the crystal ~cm
- Coincidence time resolution ~250 ps •

Full event topology reconstruction

- Low Z material : Compton dominated, large events •
- 40 cm thick ~ 90% detection efficiency
- Resolutions : \sim mm (x,y) et \sim 100 ps •
- Depth of Interaction •
- Gamma Tracking : track successive Compton • interactions
- Continuous medium •

Full event topology reconstruction

- Low Z material : Compton dominated, large events
- 40 cm thick ~ 90% detection efficiency
- Resolutions : ~ mm (x,y) et ~100 ps
- Depth of Interaction
- Gamma Tracking : track successive Compton
 interactions
- Continuous medium : manageable system response matrix?

$\mathbf{3} \gamma$ imaging

- Reconstruct incoming direction of the γ , point back to line of response
- Locate decay along the line of response objective
 3mm

Full event topology reconstruction

- Low Z material : Compton dominated, large events
- 40 cm thick ~ 90% detection efficiency
- Resolutions : $\sim mm(x,y)$ et ~ 100 ps
- Depth of Interaction
- Gamma Tracking : track successive Compton
 interactions
- Continuous medium : manageable system response matrix?

$\mathbf{3} \gamma$ imaging

- Reconstruct incoming direction of the γ , point back to line of response
- Locate decay along the line of response objective
 3mm

Ortho-positronium lifetime measurement

- Mesure Δt between MeV γ from ⁴⁴Sc decay and annihilation photons
- Map O-Ps lifetime in vivo?
 ⇒ new parametric imaging?

Technological developments

C. Buck, B. Gramlich and S. Schoppmann 2019 JINST 14 P11007

Optimization of scintillator:

- no longer the need for extreme transparency -
- what best scattering length? how to achieve it? -

Digitization:

- Fast SiPM
- Fast digitizer (Sampic)
- huge dataflow

Prototypes:

- proof of concept validation of light trapping
- studies of various scintillators -

NIM paper (2016): Measurements of timing resolution of ultra-fast silicon detectors with the SAMPIC Waveform Digitizer

(2019) Fast electronics for particle Time-Of-Flight measurement, with focus on the SAMPIC ASIC 12

Preliminary simulations

- scale \rightarrow applicable to our needs in TEP? technology :
- vertical optical fibers
- Mie & Rayleigh scatterings -
- absorption in scintillator & fibers

LiquidO is designed for neutrino physics at the MeV-GeV Getting started with a cubic volume to understand the

cube of organic scintillator (150x150x150) cm3

Single emission point in the scintillator X,Y reconstruction : barycenter of light -Z reconstruction : by ΔT of the first photons collected on top and bottom

Perspectives, improvements in Z measurement

Perspectives, improvements in Z measurement

- Correlation between neighbouring fibers waveforms
- Diffusive medium $\Rightarrow t \propto r^2$ slower than transparent medium
- Pulse shape in each waveforms is Z-dependent
- Input these correlations and pulse shape in spatial reconstruction
- **Use Machine Learning networks ? change fiber distribution?**

Perspectives, improvements in Z measurement

- Correlation between neighbouring fibers waveforms
- Diffusive medium $\Rightarrow t \propto r^2$ slower than transparent medium
- Pulse shape in each waveforms is Z-dependent
- Input these correlations and pulse shape in spatial reconstruction
- **Use Machine Learning networks ? change fiber distribution?**

Insurance Policy : Radial Fibers

Target :

mm-level resolution on 1st Compton interaction in all dimensions

- native from the axial fibers in (X,Y) 🗸
- not so easy in Z...

Insurance Policy : Radial Fibers

Target :

mm-level resolution on 1st Compton interaction in all dimensions

- native from the axial fibers in (X,Y)
- not so easy in Z...

Possible solution :

add radial fibers (orange) between the axial fibers

- mm resolution in Z \checkmark
- high number of channels to instrument
 - data volume !
 - complex mechanical engineering 🤔
 - cost of whole body PET $\land \rightarrow$ maybe an organ-dedicated PET ?

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Rotate fibers $\pm 10^{\circ}$: geometrical constraints in Z Emission point is the intersection of two lines Resolution in (X,Y) < mm-level Resolution in Z ~ cm-level Purely topology for now

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Rotate fibers $\pm 10^{\circ}$: geometrical constraints in Z Emission point is the intersection of two lines Resolution in (X,Y) < mm-level Resolution in Z ~ cm-level Purely topology for now

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Rotate fibers $\pm 10^{\circ}$: geometrical constraints in Z Emission point is the intersection of two lines Resolution in (X,Y) < mm-level Resolution in Z ~ cm-level Purely topology for now

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Rotate fibers $\pm 10^{\circ}$: geometrical constraints in Z Emission point is the intersection of two lines Resolution in (X,Y) < mm-level Resolution in Z ~ cm-level Purely topology for now

Summary

L-PET proposes to use an innovative detection technology

- Continuous detector
- Axial fiber distribution \Rightarrow full body coverage
- ~90% detection efficiency
- Millimeter-level spatial resolution
- ~ 100 ps coincidence time resolution
- 3γ imaging -
- O-Ps lifetime parametric imaging \Rightarrow new diagnostic perspectives ?

ANR Funding for a first demonstrator

- test feasibility of the new technology -
- test gamma tracking capabilities
- test image reconstruction
- validate simulations & physics
- Establish requirements for future prototypes

LPET-OTech Consortium

M. Bongrand^d, C. Bourgeois^{a α}, D. Brasse^{*b}, D. Breton^{a α}, M. Briere^{a α}, A. Cabrera^{†a α}, V. Chaumat^{a α}, A. Dahmane^b, R. Gazzini^{a α}, D. Giovagnoli^b, F. Haddad^d, A. Hourlier^b, G. Hull^{a α}, P. Lanièce^{a β}, F. Lefevre^d, P. Loaiza^{a α}, J. Maalmi^{a α}, Y. Mellak^c, T. Merlin^c, R. Mastrippolito^{a β}, C. Marquet^{$\ddagger \alpha$}, L. Ménard^{a β}, D. Navas-Nicolás^{a α}, P. Pillot^d, L. Simard^{a α}, D. Stocco^d, M.-A. Verdier^{a β}, D. Visvikis^c, and F. Yermia^d

 $^{a\alpha}$ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France $^{\mathrm{a}\beta}$ Université de Paris Cité, CNRS/IN2P3, IJCLab, 91405 Orsay, France ^bUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France ^cLaTIM, INSERM U1101, Université de Brest, 29609 Brest, France ^dSubatech, CNRS/IN2P3, Nantes Université, IMT-Atlantique, 44307 Nantes, France

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

and agence nationale de la recherche

1112200

LiquidO Consortium*

J. dos Anjos^a, L. Asquith^r, J.L. Beney^q, T.J.C. Bezerra^r, M. Bongrand^q, C. Bourgeois^{f^{\alpha}}, D. Brasse^g, D. Breton^{f^{\alpha}}, M. Briere^{f^{\alpha}}, J. Busto^b, A. Cabrera^{†f^{\alpha}}, A. Cadiou^q, E. Calvo^c, H. Carduner^q, V. Chaumat^{f^{\alpha}}, E. Chauveau^h,
M. Chenⁿ, P. Chimenti^e, F. Dal Corso^{k^{\alpha}}, A. Dahmane^g, J.-F. Le Du^{f^{\alpha}}, S. Dusini^{k^{\alpha}}, A. Earle^r, C. Frigerio-Martins^e,
J. Galán^s, J.A. García^s, R. Gazzini^{f^{\alpha}}, A. Gibson-Foster^r, D. Giovagnoli^g, P. Govoni^{j^{\alpha},j^{\beta}}, M. Grassi^{k^{\beta}},
W.C. Griffith^r, F. Haddad^q, J. Hartnell^r, A. Hourlier^g, G. Hull^{f^{\alpha}}, I.G. Irastorza^s, L. Koch^{i^{\alpha}}, P. Laniéce^{f^{\alpha},f^{\beta}},
P. Lasorak^r, C. Lefebvreⁿ, F. Lefevre^q, P. Loaiza^{f^{\alpha},f^{\beta}}, G. Luzón^s, J. Maalmi^{f^{\alpha}}, F. Mantovani<sup>d^{\alpha},d^{\beta}</sub>, C. Marquet^h,
M. Martínez^s, L. Ménard^{f^{\alpha},f^{\beta}}, D. Navas-Nicolás^{f^{\alpha}}, H. Nunokawa^m, M. Obolensky<sup>f^{\alpha},f^{\beta}</sub>, J.P. Ochoa-Ricoux^{\alpha},
C. Palomares^c, P. Pillot^q, J.C.C. Porter^r, M. S. Pravikoff^h, M. Roche^h, B. Roskovec^l, M.L. Sarsa^s,
S. Schoppmann^{i^{\beta}}, A. Serafini<sup>k^{\alpha,k^{\beta}}, L. Simard^{f^{\alpha}}, M. Sisti^{j^{\alpha}}, D. Stocco^q, V. Strati<sup>d^{\alpha,d^{\beta}}, J.-S. Stutzmann^q,
F. Suekane^{\delta p}, M.-A. Verdier<sup>f^{\alpha,f^{\beta}}, A. Verdugo^c, B. Viaud^q, A. Weber^{i^{\alpha}}, and F. Yermia^q
</sup></sup></sup></sup></sup>

^aCentro Brasileiro de Pesquisas Físicas (CBPF), Rua Xavier Sigaud 150, Rio de Janeiro, 22290-180, Brazil ^bUniversité d'Aix Marseille, CNRS/IN2P3, CPPM, Marseille, France
^cCIEMAT, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av. Complutense 40, E-28040 Madrid, Spain
^{d^a}INFN, Ferrara Section, Via Saragat 1, 44122 Ferrara, Italy
^{d^b}Department of Physics and Earth Sciences, University of Ferrara, Via Saragat 1, 44122 Ferrara, Italy
^eDepartamento de Física, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário Cx. Postal 10.011, CEP 86.057-970, Londrina – PR, Brazil
^{f^a}Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France
^{f^b}Université de Paris Cité, CNRS/IN2P3, IJCLab, 91405 Orsay, France
^gUniversité de Strasbourg, CNRS, IPHC UMR 7178, F-67000 Strasbourg, France
^hUniversité de Bordeaux, CNRS, LP2I Bordeaux, UMR 5797, F-33170 Gradignan, France
^{i^a}Johannes Gutenberg-Universität Mainz, Institut für Physik, Staudingerweg 7, 55128 Mainz, Germany

	^{i^β} Johannes Gutenberg-Universität Mainz, Detektorlabor, Exzellenzcluster PRISMA ⁺ , Staudingerweg 9, 5
se 40,	Mainz, Germany
	j^{α} INFN, Sezione di Milano-Bicocca, I-20126 Milano, Italy
	^{j^β} Dipartimento di Fisica, Università di Milano-Bicocca, I-20126 Milano, Italy
taly	$^{\mathbf{k}^{\alpha}}$ INFN, Sezione di Padova, via Marzolo 8, I-35131 Padova, Italy
n 380,	$^{k^{\beta}}$ Dipartimento di Fisica e Astronomia, Università di Padova, via Marzolo 8, I-35131 Padova, Italy
	¹ Institute of Particle and Nuclear Physics Faculty of Mathematics and Physics, Charles University,
	V Holešovičkách 2180 00 Prague 8, Czech Republic
	^m Department of Physics, Pontifícia Universidade Católica do Rio de Janeiro, C.P. 38097, 22451-900, Rie
	Janeiro, Brazil
	ⁿ Department of Physics, Engineering Physics & Astronomy, Queen's University, Kingston, Ontario K7L
any	Canada
	^o Department of Physics and Astronomy, University of California at Irvine, 4129 Frederick Reines Hall, In
	California 92697, USA
	^p RCNS, Tohoku University, 6-3 AzaAoba, Aramaki, Aoba-ku, 980-8578, Sendai, Japan
	^q Subatech, CNRS/IN2P3, Nantes Université, IMT-Atlantique, 44307 Nantes, France
	^r Department of Physics and Astronomy, University of Sussex, Falmer, Brighton BN1 9QH, United King
	^s Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Calle Pedro Cen
	12, 50009 Zaragoza, Spain

9,55128

Kingdom o Cerbuna

^{*}Email:LiquidO-Contact-L@in2p3.fr.

[†]Email: anatael@in2p3.fr.

[‡]Email: suekane@awa.tohoku.ac.jp