Impact of Monte-Carlo System Matrix **Completeness on Image Quality in TEP**

Adrien Hourlier, Debora Giovagnoli, Virgile Bekaert, Frédéric Boisson, and David Brasse IPHC, UMR 7178 CNRS Université de Strasbourg

adrien.hourlier@iphc.cnrs.fr

2022/06/14

de l'Université de Strasbourg

Iterative PET Image Reconstruction Strategy

Iterative statistical reconstruction

- detailed models of the physics of photon propagation and detection
- description of the read-out electronics
- benefits from increasing computing ressources

System Response Matrix (SRM) -

- A_{ii} : probability for a pair of γ originating from voxel j in the imaged volume to be detected along LOR i
- Can be decomposed in different factors, encoding different physical aspects of the detection
- Determination of SRM:
 - analytically
 - experimentally
 - Monte-Carlo
- Time consuming to generate, heavy to store, heavy to handle during reconstruction

The IRIS pre-clinical PET/CT

- Commercialised by Inviscan Imaging Systems
- small animal PET/CT
- 2 octogonal rings
- modules of 26x27 crystals
- LYSO:Ce crystals $(1.6 \times 1.6 \times 12)$ mm³
- I-6 coincidence detection
- 23654592 possible lines of response

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

reconstruction :

- OS-EM 8 subset, 8 iteration
- home-made system matrix
- correction of efficiency uniformity
- correction of randoms
- no smoothing, no correction for attenuation

MC matrix generation

Matrix generation

- Monte-Carlo matrix generation using the **GATE platform**
- Simulate a uniform activity in a cylindrical volume
- Pairs of back-to-back γ emitted at 4π randomly in the volume
- No attenuation
- Each detected pair in a given LOR increment the weight of the voxel of origin for that LOR
- 2 options :

-

-

- "original" matrix : keep the voxels and LOR as we generate them
- "folded" matrix : propagate generated voxels to other LOR according to the (xOy), (xOz) and (yOz) planar symmetries (potentially x8 in equivalent statistics?)

Matrix storage

- Hollow matrix
 - List of LOR and number of voxels
 - Voxel index and a weight
- Generated matrices up to ~ITB for this study

MC matrix generation

Matrix generation

- Monte-Carlo matrix generation using the **GATE platform**
- Simulate a uniform activity in a cylindrical volume
- Pairs of back-to-back γ emitted at 4π randomly in the volume
- No attenuation
- Each detected pair in a given LOR increment the weight of the voxel of origin for that LOR
- 2 options :

-

-

- "original" matrix : keep the voxels and LOR as we generate them
- "folded" matrix : propagate generated voxels to other LOR according to the (xOy), (xOz) and (yOz) planar symmetries (potentially x8 in equivalent statistics?)

Matrix storage

- Hollow matrix
 - List of LOR and number of voxels
 - Voxel index and a weight
- Generated matrices up to ~ITB for this study

Filling up the matrix

Number of LOR quickly reaches ~100% _

- -
- ray-tracer : start filling the diffusion kernel of the LOR

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

As no new LOR is available we start finding more and more voxels belonging to a given LOR Compare the number of voxel per LOR to the average number of voxel per LOR in a purely geometrical

A few examples of LOR projection PDFs

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

- Large variety of shapes of LOR projection probability 10^{-1} density function (scaled to maximum)
 - Dependency on incident angle on the LYSO:Ce modules
 - Noticeable edge effects for LOR with crystals near the module's sides
- How to account for all these shapes when describing 10^{-2} _ the scattering kernel in image reconstruction?

1**0**⁻³

A few examples of LOR projection PDFs

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

- Large variety of shapes of LOR projection probability 10^{-1} density function (scaled to maximum)
 - Dependency on incident angle on the LYSO:Ce modules
 - Noticeable edge effects for LOR with crystals near the module's sides
- How to account for all these shapes when describing 10^{-2} _ the scattering kernel in image reconstruction?

1**0**⁻³

Image Quality Phantom

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Uniform region

- Mean voxel value
- Variance (in % of mean voxel value)

Image Quality Phantom

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Rod region

- I-5 mm diameter
- Mean voxel value long the rod —
 - (in % of mean voxel value of the uniform region)

Uniform region

- Mean voxel value _
- Variance (in % of mean voxel value) -

Image Quality Phantom

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Rod region

-

- I-5 mm diameter
- Mean voxel value long the rod
 - (in % of mean voxel value of the uniform region)

Uniform region

- Mean voxel value
- Variance (in % of mean voxel value)

Cavity region

- Filled with air and water (no activity)
- Mean voxel value in cold region
 - (in % of mean voxel value of the uniform region)

Single IQP slices

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

10

Single IQP slices

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

10

Recovery Coefficients

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Spatial resolution parameters converge rather quickly Signal/Noise keep on improving, still far from convergence Noise can be averaged out by regularization

Visual Impact on FNa Image Reconstruction

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

F¹⁸-FNa (9.7 MBq) 10 min acquisition 12 min post-injection

12

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

F¹⁸-FNa (9.7 MBq) 10 min acquisition 12 min post-injection

12

Quantification on vertebrae

13

Visual Impact on FDG Image Reconstruction

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

 18 F-FDG (4.8 MBq) 10 min acquisition 60 min post injection

Visual Impact on FDG Image Reconstruction

Quantification on tumors

Summary

- We have studied the impact of Monte-Carlo based system response matrix on the image quality in TEP
- - impact of modelling other processes become dominant
 - good news! no need to simulate and handle TB matrix files
- - Balance availability of computing with clinical interest \Rightarrow application specific -
 - Find a better metric to evaluate this effect : perform a radiomics evaluation of tumors

Base study to evaluate gains with future reconstructions based on neural networks we will use to

increase SRM statistics while keeping reconstruction time manageable

For more details on this study, see <u>https://arxiv.org/abs/2204.10946</u>

Adrien Hourlier — IPHC, UMR 7178 CNRS Université de Strasbourg

Quantification metrics (NEMA NU 4 — 2008) converge quickly as we increase the statistics of the SRM

Visually, image quality seems to keep improving : noise reduction, SNR improves on small structures

IQP reconstructed with IRIS's reconstruction

inviscan

Imaging systems

